Thesis defense of Foivos KARAKOSTAS

Over the years, UnivEarthS has financially supported several theses and accompanied numerous students in its research teams.

Foivos Karakostas joined UnivEarthS in 2014 in the I6 team: From dust to planets. He will defend his thesis this week:

“Analysis and modeling of meteor impact and airburst generated seismic waves on terrestrial planets with atmosphere.”
The defense will take place on Friday, September 7, at 2 pm at the IPGP Amphitheater.
Meteoric events constitute a source of paramount importance for Planetary Seismology, since their locations and, in some cases, their occurence times can be accurately known from orbiters, tracking or visual inspections. Their contribution is enhanced in the case of a seismic experiment with one seismometer, as the SEIS (Seismic Experiment of Interior Structure) of the imminent Martian mission “InSight” (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), as the known location allows a direct inversion of differential travel times and wave forms for structure identification.
Meteor impacts generate body and surface waves when they reach the surface of a planet. When they explode into the atmosphere, they generate shock waves which are converted into linear, seismic waves in the solid part and acoustic waves in the atmosphere. This effect can be modeled as the amplitude of Rayleigh and other Spheroidal modes excitation, due to atmospheric/ground coupling effects.
This PhD dissertation is focusing on the investigation and modeling of the meteor generated Rayleigh waves. A brief recall to the advance of planetary science with focus on planetary seismology and the study of atmospheric seismic sources is presented. Thereafter, the theory concerning the shock waves in the atmosphere and in the ground is presented in further detail. In the case of shock wave generation in the atmosphere, the effect of transition from a highly nonlinear propagation regime to the linear one is presented for Chelyabinsk superbolide. In the case of the generation in the subsurface, a meteor impact on the Moon is investigated, using hydrodynamic codes. A comparative analysis of both cases is performed in order to present the transition processes of the propagation regime.
An inversion of the seismic source of Chelyabinsk superbolide is performed, in order to examine the properties of the associated source in Earth’s atmosphere. We develop a line source, made of a series of consecutive point sources, based on a provided trajectory. The calculation of synthetic seismograms of Rayleigh waves associated to the event is performed by the summation of normal modes of a model for the solid part and the atmosphere of the planet. Through an inversion technique based on singular value decomposition and least square method, solutions for the moment magnitude are provided. Moreover we found in the seismic data a Doppler effect, associated with the directivity of the source. In addition, we perform 3D modeling based on spectral element method in a purely solid model, to assess the effects of 3D crustal features and highlight differences with a source inverted in the ground versus on a source correctly positioned in the atmosphere.
In the case of Mars, normal mode summation is used in order to provide waveforms associated to impacts on the planetary surface or in low altitudes in the martian atmosphere. It is shown that the contribution of the fundamental spheroidal solid mode is dominating the waveforms, compared to the one of the first two overtones. The comparison between the amplitudes of synthetic seismograms of different size, show that small impactors (diameter of 0.5 to 2 meters) can be detected by the SEIS VBB seismometer of InSight mission, only in the higher frequencies of Rayleigh waves, even for short epicentral distances. An analysis based on impact rate estimations enables to calculate the number of detectable events of meteor impacts for projectiles with diameter greater than 1 meter and it leads to the conclusion of 6.7 to 13.4 detectable impacts during a Mars year, the nominal operational period of InSight mission.
Finally, an analysis on the ground characteristics of a shallow low velocity zone under InSight landing site is presented. Through an investigation by classical test of geomechanics, it is shown that this zone is supposed to affect the quality of seismic signals.