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What is data assimilation?

The basic purpose of data assimilation is to combine different sources of
information in order to produce the best possible estimate of the state of
a system.

I observations of the system

I physical laws describing its behaviour (numerical model)

Why not simply use observations?

I too sparse or partial in geo- and astrophysics

I interpolation: numerical model

I combining (by means of the model) several noised data: filter out
part of the noise & more accurate estimate (“accuracies are added”)



Different mathematical approaches

The problem of data assimilation can be tackled using different
mathematical approaches: signal processing, control theory, estimation
theory, . . .

I Stochastic methods (eg Kalman filter): estimation theory.

I Variational methods (3D-Var, 4D-Var. . . ): control theory.



Fields of application

Meteorology (initialization of a forecast): sole field of application until
early 1990ies.
Today:

I atmospheric chemistry

I oceanic biochemistry

I glaciology

I physical oceanography

I geomagnetism

I solar magnetism

I seismology

I . . .



A variety of purposes

I the estimation of the trajectory of a system to study its variability
(reanalyses)

I the identification of systematic errors in numerical models

I the estimation of unobserved field variables (e.g. the magnetic field
inside Earth’s core)

I the estimation of parameters (e.g. a structural Earth model in
seismology)

I the optimization of observation networks



A scalar example

Assume we have two distinct measurements,

y1 = 1

and
y2 = 2,

of the same unknown quantity x .

What estimation of its true value can we make?



First approach

We seek x which minimizes (x − 1)2 + (x − 2)2, and we find the estimate

x̂ = 3/2 = 1.5

(this is the least-squares solution).
This solution has the following problems:

I it is sensitive to any change of units. If y1 = 1 is a measurement of
x and y2 = 4 is a measurement of 2x , then minimizing
(x − 1)2 + (2x − 4)2 leads to x̂ = 9/5 = 1.8.

I it does not reflect the quality of the various measurements.



Reformulation in a statistical framework

We define

Yi = x + εi , (1)

where the observation errors εi satisfy the following hypotheses

I E (εi ) = 0 (unbiased measurements)

I Var (εi ) = σ2
i (accuracy is known)

I Covar (ε1, ε2) = 0, i.e. E (ε1ε2) = 0, errors are independent.

We next seek an estimator (i.e. a random variable) X̂ which is

I linear: X̂ = α1Y1 + α2Y2

I unbiased: E
(
X̂
)

= x

I of minimum variance: Var
(
X̂
)

minimal (optimal accuracy)



BLUE

This estimator is called the BLUE: Best Linear Unbiased Estimator. To
compute the αi we use the unbiased hypothesis

E
(
X̂
)

= x = (α1 + α2)x + α1E (ε1) + α2E (ε2) = (α1 + α2)x , (2)

so that α1 +α2 = 1, or α2 = 1−α1. Next we compute the variance of X̂ .

Var
(
X̂
)

= E

[(
X̂ − x

)2]
= E

[
(α1ε1 + α2ε2)2

]
= α2

1E
(
ε21
)

+ 2α1α2E (ε1ε2) + α2
2E
(
ε22
)

= α2
1σ

2
1 + α2

2σ
2
2

= α2
1σ

2
1 + (1− α1)2σ2

2 .

Our estimator X̂ has to minimize this quantity.



BLUE

Computing α1 such that

d

dα1
Var

(
X̂
)

= 0 (3)

yields

α1 =
σ2
2

σ2
2 + σ2

1

. (4)

It follows that

X̂ =
σ2
2

σ2
1 + σ2

2

y1 +
σ2
1

σ2
1 + σ2

2

y2. (5)

Note that we get the same result if we try to minimize the functional

J (x) =
1

2

[
(x − y1)2

σ2
1

+
(x − y2)2

σ2
2

]
. (6)



Comments

I This statistical approach solves the problem of sensitivity to units
and it incorporates measurement accuracies.

I The accuracy of the estimator is given by the second derivative of J
d2J
dx2

∣∣∣∣
x=X̂

=
1

Var
(
X̂
) =

1

σ2
1

+
1

σ2
2

, (7)

so that “accuracies are added”.

I If we consider that y1 = xb is a first guess of x (with standard
deviation σb = σ1) and y2 = y is an additional observation (with std
dev σ = σ2), then we can rearrange Eq. (5) as

X̂ = xb +
σ2
b

σ2 + σ2
b

(
y − xb

)
. (8)

The quantity y − xb is called the innovation. It contains the
additional information provided by y with respect to xb.



Data assimilation methods

Two classes of methods

I statistical methods: direct computation of the BLUE thanks to
algebraic computations (the Kalman filter);

I variational mehods: minimization of the functional J (4D-Var).

Shared properties

I they provide the same result (in the linear case);

I their optimality can only be demonstrated in the linear case;

Shared difficulties

I accounting for non-linearities

I dealing with large problems

I error statistics are required but sometimes only poorly known



Notations

There exists some sort of standard notations, summarized by Ide et al.
(1997).

I x state vector

I xt true state

I xb background state

I xa analyzed state

Superscripts denote vector types, subscripts refer to space or time. In the
following: unless otherwise noted, all vectors will be column vectors. If a
and b are two column vectors of equal size n, with the superscript T
denoting transposition, then

aTb is their scalar product =
∑

aibi , (9)

abT is a matrix of coefficients aibj , (i , j) ∈ {1, . . . , n}2 . (10)



Discretization and true state

Most of the time, our goal will be to estimate as accurately as possible a
geophysical field that varies continuously in space and time. This real,
continuous (and possibly multivariate) field is denoted by ”x.
Numerical models are often used for the estimation. Numerical models
operate in a discrete world and only handle discrete representations of
physical fields. Therefore we will try to estimate a projection of the real
state ”x onto a discrete space. Let Π denote the associated projector, and
xt be the projection of ”x

xt = Π( ”x). (11)

xt is called the true state (see above); this is the state we wish to
estimate in practice.



Discretization and true state

In a data assimilation problem, one deals with dynamical models that
compute the time evolution of the simulated state. Let ”xi and ”xi+1 be
the real (continuous) states at two consecutive observation times, i being
a time index. These two states are related by a causal link (the physical
model)

”xi+1 = g ( ”xi ) . (12)

Projecting this equality into the discrete world, we get

xti+1 = Π [g (”xi )] . (13)

The dynamical model g is not strictly known, even though we hopefully
know most of the physics involved in it. This physics is represented in the
discrete world by our numerical model M, which operates on discrete
states such as xt . Introducing this model into Eq. (13), we get

xti+1 =Mi,i+1

(
xti
)

+ ηi,i+1, (14)

in which

ηi+1 = Π [g ( ”xi )]−Mi,i+1

(
xti
)
. (15)



Discretization and true state

The model error ηi+1 term accounts for the errors in the numerical
models (e.g. misrepresentation of some physical processes) and for the
errors due to the discretization. The covariance matrix Qi+1 of the model
error is given by

Qi+1 = Covar
(
ηi+1

)
= E

[(
ηi+1 − 〈ηi+1〉

) (
ηi+1 − 〈ηi+1〉

)T ]
, (16)

where 〈ηi+1〉 = E
(
ηi+1

)
is the average error.



Observations I

The real, continous field ”x results in a signal ”y in the space of

observations. This involves a mapping ˛hffl
”y = ˛hffl (”x) . (17)

Despite its simplicity, this equation can not be used in practice. First, we
do not have access to the real ”y: the observed field yo is contaminated

with measurement errors, denoted by εµ. Accordingly,

yo = ˛hffl (”x) + εµ. (18)

Second, ˛hffl, which represents the physics of the measurement process
(which might be exactly known), is a continuous mapping. In practice,
this physics is represented by a numerical operator H, which is applied to
the discrete state we wish to estimate, xt . Incorporating H and Π in
Eq. (18) yields

yo = H(xt) + ˛hffl (”x)−H [Π(”x)]︸ ︷︷ ︸
εr

+εµ, (19)



Observations II

where εr is often termed the error of representativeness (Lorenc, 1986),
which includes the errors related to the representation of the physics in H
and those errors due to the projection Π of the real state ”x onto the
discrete state space (due for instance to numerical interpolation). The
sum of the measurement error and the error of representativeness is the
observation error

εo = εµ + εr . (20)

This allows us to write the final form of the equation relating the discrete
true state xt and the observations

yo = H
(
xt
)

+ εo . (21)

The covariance matrix of the observation error εo is defined by

R = Covar (εo) = E
[
(εo − 〈εo〉) (εo − 〈εo)〉)T

]
. (22)



A priori (background) information

It can be that we have some a priori knowledge of the state xt , under the
form of a vector xb having the same dimension as xt . This is the
background state. Following a similar logic, the background error is
defined as

εb = xb − xt . (23)

Often the estimate of the background state comes from a model
simulation. In this case, the background is a forecast and is rather
denoted by xf , with forecast error εf .



A priori (background) information

The covariance Pb of the background error is given by

Pb = Covar
(
εb
)

= E
[(
εb − 〈εb〉

) (
εb − 〈εb〉

)T ]
. (24)



Analysis

The result of the assimilation process is often called the analysis, and is
denoted by xa. The analysis error is defined by

εa = xa − xt , (25)

while the covariance matrix of the analysis error εa is defined by

Pa = Covar (εa) = E
[
(εa − 〈εa〉) (εa − 〈εa〉)T

]
. (26)

An important comment

the problem is entirely set-up once the physical model and the observations
have been chosen, and the covariances (and possibly the background)
defined. All the physics has been introduced at this stage. The remaining
part (the production of the analysis) is technical.



Useful references

I “Discrete Inverse and State Estimation Problems”, by Wunsch
(2006), provides a very personal and powerful account of adjoint
methods and their application in geophysical fluid dynamics
(oceanography).

I In her book entitled “Atmospheric Modelling, Data Assimilation and
Predictability ”, E. Kalnay (2003) has two comprehensive and very
well-written chapters on the basics and applications of data
assimilation techniques to atmospheric dynamics.

I In addition, Evensen (2009) provides a very complete treatment of
data assimilation techniques, with a strong and useful emphasis on
the basics and applications of the ensemble Kalman filter he
invented.

I Last, but not least, Blayo et al. (2014) is an excellent compilation
covering theoretical and practical aspects of data assimilation in
geosciences.



Useful references

For a start, I would highly recommend the review paper by Talagrand
(1997), “Assimilation of observations, an introduction” which provides an
extremely concise and well-written overview of the topic.
In addition, if you are looking for references related to the geophysical
inverse problem in general, Parker (1994) and Tarantola (2005) provide
two very personal, insightful, and sometimes contradictory views on how
we should go about making inference on the Earth based on a finite
number of noisy observations and on physical laws governing its
behaviour.
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