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Tentative plan
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Introduction

Stochastic Estimation. The BLUE
The Kalman filter

Variational assimilation

Numerical Weather Prediction
Other examples



Assimilation in a dynamical framework
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Sequential assimilation
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Sequential assimilation

% : observation y°

I forecast error e/ (P/) I: observation error €’(R)

I: analysis error *(P?) ~ e——=: Model trajectory




Sequential assimilation
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Variational assimilation

% : observation y°
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Variational assimilation, 4D-Var (adjoint)

o——e: Model trajectory

adjust xg




Pros & cons

Pros

KF: error estimate after analysis

4D-Var: all observations in one sweep

Cons

KF: Nonlinearities & problem size. EnKF

4D-Var: Implementation of adjoint model (Automatic
differentiation)

4D-Var: Nonlinearities (tangent linear model) & perfect model
assumption
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The archetypal example: Numerical Weather Prediction

REVIEW

doi:10.1038/nature14956

The quiet revolution of numerical
weather prediction

Peter Bauer', Alan Thorpe' & Gilbert Brunet?

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is
performed every day at major operational centres across the world.

Bauer et al., Nature (2015)



Short History

1900ies: prognostic set equations that one could solve (in principle)
1922: Richardson's forecast (computer = bunch of humans)
1950ies: first integation of simplified equations (Princeton, Sweden)

1963 (Lorenz, deterministic chaos): finite horizon of predictability

vV vV vV VY

Since 1970: numerical integration of relevant equations (NWP)



Set of equations

v

Conservation of Mass

v

Conservation of Momentum (Navier—Stokes, with background
rotation)

v

Conservation of Energy

v

Constitutive relationships (ideal gas)

v

+ BC and IC (nonlinear mixed initial-boundary value problem)

changes in space and time of wind, pressure, temperature, density

Integration on a computer
grid size for GCM of ~10 km.

resolved scales vs unresolved scales

Subgrid scale modelling (parameterization): source terms for mass,
momentum and heat




Measure of success
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Why success?

1 day / per decade since the 1970ies.
» Daily check

> Better data
> Better representation of unresolved processes

Figure 2| Physical processes of importance to

b weather prediction. These are not explicitly
e dreg resolved in current NWP models but they are
0, chemistry represented via parameterizations describing their
Long-wave Short-wave CH, oxidation contributions to the resolved scales in terms of
radiation radiation ‘mass, momentum and heat transfers
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» Better assimilation technology (uncertainties & objective analysis)
>

The size of the problem at hand: 50 million observations are ingested
every 6 hr in numerical models possessing 10° field variables.



Ensemble forecasting
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Ensemble 4DVar
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Finite horizon of predictability

BOX |

Sensitivity of forecasts to initial conditions and error propagation

Box 1Figure | Maps showing the long-range impact of model
initialization on the European forecast. Panel a shows the day-6
mean forecast error (the height of the 500 hPa pressure level in
metres) of the flow at around 5 km height (colour-coded shading), the
forecast itself (solid isclines) and the verifying analysis (dashed
isolines) valid on 15 February 2014, Over the western US, the jet
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identifies the tropical East Pacific (boxed in b) as a likely location of a
possible forecast error source. This area was characterized by very
large 24-h forecast emors of upper-level winds because of the paucity
of wind observations there. When running an experiment where the
areainthe box in b is relaxed towards the analysis rather than evolving
in the forecast, the strong initial growth of forecast errors is reduces




The future

» Even more observations (eg upper level wind with Doppler-radar
technology)

v

More physics (coupling with ocean, land surface, sea-ice models)

v

More chemistry (aerosol, trace gases)

v

Global resolution of ~ 1 km. Energy concern.



Technological challenge
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Codes need to evolve to meet hardware requirements (exascale:
computing / data processing)



The future
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Figure 6 | Key challenge areas for NWP in the future. Advances in forecast
skill will come from scientific and technological innovation in computing,
the representation of physical processes in parameterizations, coupling of
Earth-system components, the use of observations with advanced data
assimilation algorithms, and the consistent description of uncertainties
through ensemble methods and how they interact across scales. The ellipses
show key phenomena relevant for NWP as a function of scales between 10™*
and 10 km resolved in numerical models and the modelled complexity of
processes characterizing the small-scale flow up to the fully coupled Earth
system. The boxes represent scale-complexity regions where the most
significant challenges for future predictive skill improvement exist. The arrow
highlights the importance of error propagation across resolution range and
Earth-system components.
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