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Messages

I The geomagnetic field is mainly created by a complex, nonlinear process
taking place in the Earth’s core: the geodynamo operates on a wide range
of space and time scales

I The ever-growing and heterogeneous catalog of geomagnetic data allows
us to get a more and more accurate description of this process and of its
variability

I This better description is an incentive for constructing and testing physical
models able to account for the record of interannual to millennial
geomagnetic variations (in a data assimilation framework).

I Goals:
I Identify the processes controlling the geomagnetic secular variation
I Place constraints on the internal structure of the core
I Forecast the evolution of the field and reanalyze its past variations

I This effort started about 8 years ago, and is still at the research stage.



Outline

1. Introduction – The geomagnetic field

2. Application of the EnKF to a numerical model of
the geodynamo



The Tesla warning

Remember
I 1 T=10 kG

I 1 mT=10 G

I 1 µT=10 mG

I 1 nT=10 µG



1. Introduction – The geomagnetic field



The Earth’s interior and the geomagnetic field

c© European Space Agency (www.esa.int/swarm)



The Earth’s interior and the geomagnetic field



The Earth’s interior and the geomagnetic field

SIC

FOC

SM

SM: Solid Mantle (rocks), 0–2890 km depth
FOC: Fluid Outer Core (liquid Fe), 2890–5150 km depth
SIC: Solid Inner Core (solid Fe), 5150–6370 km depth



Sources of the geomagnetic field

The geodynamo accounts for more than 90% of the field measured at the
Earth’s surface.

Hulot, Sabaka, Olsen, Fournier

Treatise on Geophysics, 2nd edition, 2015



Sensitivity of a measurement to Br at the core surface



Core-Mantle boundary sensitivity



Core-Mantle boundary sensitivity



Core-Mantle boundary sensitivity



Core-Mantle boundary sensitivity



Core-Mantle boundary sensitivity



Core-Mantle boundary sensitivity



The lithosphere is magnetized

World Digital Magnetic Anomaly Map consortium



The Earth’s main magnetic field

Br (nT) at Earth’s surface in 2007
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The main field

To take home

On interannual to millennial time scales, geomagnetic observations are connected
with, and restricted to (by nature), the (large-scale) radial component of mag-
netic induction, Br , at the core surface (the small scales are screened by the
crustal field).
Large-scale: spherical harmonic degree ` . 13 – lateral resolution of ∼ 1500 km
at the core surface. Geomagnetists are short-sighted.



The catalogs of data
τconv ∼ 150 yr τdiff ∼ 60, 000 yr

I Paleo-,archeomagnetism: 0 − 10(100, 1000+) kyr ago D, I ,F

I Mariners: 0 − 400 yr ago D, I

I Observatories: 0 − 150 yr ago X ,Y ,Z

I Satellites: 0 − 15 yr ago X ,Y ,Z



A heterogeneous record: spatial coverage (courtesy Chris Finlay)

archeo/paleo: 0− 10+ kyr ago

Locations of lake sediment records used to constrain the
CALS10k model of Korte et al. (EPSL, 2011) spanning
the past 10kyrs.

logbooks: 0 − 400 yr ago

Locations of historical data (all components) between
1770 and 1790 from the Jonkers et al. (Rev. Geophys.,
2003) database.

observatories: 0 − 150 yr ago

Locations of observatories used in determination of recent
internal field models.

satellites: 0 − 15 yr ago
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Example showing 3 days of CHAMP vector satellite data
from 2009



Synthesis
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Processes?



Inference on the unseen

Another source of information: a physical model

A numerical model of core dynamics and the geodynamo.
Data assimilation: (data) && (prognostic numerical model)

Earth’s
surface

core-mantle
boundary



Inference on the unseen

Another source of information: a physical model

A numerical model of core dynamics and the geodynamo.
Data assimilation: (data) && (prognostic numerical model)

I Conservation laws (mass, momentum,
energy) and Maxwell’s equations (MHD
approximation)

I Set of 3D non-linear coupled PDEs to
solve in a spherical shell (the FOC)

I Boussinesq (Dissipation number = 0.4
in the FOC)

I Pseudo-spectral method (Glatzmaier,
1984)

Earth’s
surface

core-mantle
boundary



Inference on the unseen

Another source of information: a physical model

A numerical model of core dynamics and the geodynamo.
Data assimilation: (data) && (prognostic numerical model)

Earth’s
surface

core-mantle
boundary



Trajectory in model space

⋆: observation yo

I: observation error ǫo(R)

: Model trajectory
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Sequential assimilation

⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

I: forecast error ǫf(Pf)
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Sequential assimilation

⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

I: forecast error ǫf(Pf)

I: analysis error ǫa(Pa)
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Sequential assimilation

⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

I: forecast error ǫf(Pf)
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Sequential or variational?
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2. Application of the EnKF to a numerical model of the
geodynamo



The ensemble Kalman filter: Principle

This is a sequential assimilation method, applied here to three-dimensional,
convection-driven, numerical dynamo model.

Concept (Evensen, 1994)

I Have an ensemble of dynamical states evolve concurrently

I Use this ensemble to generate (on-the-fly) the statistics needed for the
analysis of the stream of observations
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I Well-suited for moderatly nonlinear problems, and more adaptive than
optimal interpolation (OI), which assumes frozen forecast error statistics
(Kuang et al., 2008, 2009; Aubert & Fournier, 2011).



The ensemble Kalman filter: Principle

This is a sequential assimilation method, applied here to three-dimensional,
convection-driven, numerical dynamo model.

Concept (Evensen, 1994)

I Have an ensemble of dynamical states evolve concurrently

I Use this ensemble to generate (on-the-fly) the statistics needed for the
analysis of the stream of observations

time

m
a
g

n
et

ic
en

er
g

y
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I Well-suited for moderatly nonlinear problems, and more adaptive than
optimal interpolation (OI), which assumes frozen forecast error statistics
(Kuang et al., 2008, 2009; Aubert & Fournier, 2011).



The ensemble Kalman filter: Implementation

I The starting dynamo code:
a modified (more modular) version of
the PARODY code (Dormy et al., 1998;
Aubert et al., 2008).
+ SHTns (Schaeffer, G3, 2013).

I The EnKF layer:
a suitably modified version of the
Parallel Data Assimilation Framework
of Nerger & Hiller (2013).

Software for ensemble-based data assimilation systems—Implementation
strategies and scalability

Lars Nerger n, Wolfgang Hiller

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
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a b s t r a c t

Data assimilation algorithms combine a numerical model with observations in a quantitative way. For
an optimal combination either variational minimization algorithms or ensemble-based estimation
methods are applied. The computations of a data assimilation application are usually far more costly
than a pure model integration. To cope with the large computational costs, a good scalability of the
assimilation program is required. The ensemble-based methods have been shown to exhibit a
particularly good scalability due to the natural parallelism inherent in the integration of an ensemble
of model states. However, also the scalability of the estimation method – commonly based on the
Kalman filter – is important. This study discusses implementation strategies for ensemble-based filter
algorithms. Particularly efficient is a strong coupling between the model and the assimilation algorithm
into a single executable program. The coupling can be performed with minimal changes to the
numerical model itself and leads to a model with data assimilation extension. The scalability of the data
assimilation system is examined using the example of an implementation of an ocean circulation model
with the parallel data assimilation framework (PDAF) into which synthetic sea surface height data are
assimilated.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Ensemble-based data assimilation algorithms are applied to
combine numerical models with observational data for various
applications like in meteorology, oceanography, or in the problem
of history matching in petroleum research. The algorithms are
typically variants of the ensemble Kalman filter (EnKF, Evensen,
1994; Burgers et al., 1998). The computationally most efficient
methods are currently the so-called ensemble-square root Kalman
filters (EnSKF). Several of these methods have been developed and
classified over the recent years (Bishop et al., 2001; Anderson,
2001; Whitaker and Hamill, 2002; Evensen, 2004; Tippett et al.,
2003; Nerger et al., in press). For strongly nonlinear applications,
particle filters are of growing interest (see van Leeuwen, 2009).

All EnSKFs use an ensemble of model state realizations to
estimate the error of the model state. A prediction of the error at a
future time is computed by integrating each ensemble state
independently by the model. The integrations are typically
performed until observations are available. At this time, the
information from the observations and the ensemble are com-
bined by performing an analysis step based on the Kalman (1960)

filter. The quantitative combination of both information sources is
computed using the estimated errors of the observations and the
ensemble covariance matrix. All ensemble members are updated
in the analysis step resulting in an analysis ensemble that
represents the new state estimate and the corresponding errors.

Typical ensemble sizes in EnSKF applications are between the
order of 10 and 100 states. Because each ensemble state is
integrated by the model, the application of an EnSKF is computa-
tionally extremely costly. To reduce the execution time of a data
assimilation program, the natural parallelism in the ensemble
integration can be utilized. As each ensemble state can be inte-
grated independently from the others, all states can be integrated
at the same time, if a sufficiently big computer is available. In the
analysis step, all ensemble members have to be combined to
compute the ensemble error covariance matrix. The analysis step
can be parallelized to reduce its execution time. For the original
EnKF, parallel implementations were reported by Keppenne (2000),
Keppenne and Rienecker (2002) and Houtekamer and Mitchell
(2001). The scalability of different ensemble-based Kalman filters
was discussed by Nerger et al. (2005b).

The filter algorithms only require a limited amount of infor-
mation from the model. In general, they can operate entirely on
state vectors, rather than individual fields. In the state vector, all
relevant fields, or even parameters in the case of parameter-
estimation applications, are stored. For the implementation of
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subroutines (indicated in the figure by the prefix ‘‘DA_’’). In
addition, a loop can be inserted around the time stepping part
of the model. This ‘‘ensemble loop’’ increases the flexibility when
the execution of the assimilation system is configured with
parallelization. In general, there can be one or several ‘‘model
tasks’’, each of which is computing forecasts of ensemble states. If
there is only a single model task, it has to compute the forecast of
all states in the ensemble. Thus, when the forecast is computed
from time ta to tb, the model task has to jump back to time ta for
each new ensemble member that it has to integrate. The imple-
mentation has to ensure that the integrations are independent
and consistent. For example, if the model uses forcing data, like
surface wind stress in an ocean model, it has to be correctly
re-initialized. If the program utilizes the parallelism of the
ensemble integration, one can configure the execution of the
program such that the ensemble size equals the number of model
tasks. In this case, all model tasks will only compute forward in
time. The consistency of the integration might be easier to
achieve with this configuration as, e.g. the forcing never needs
to be restored to an earlier time. If the number of model tasks is
always equal to the ensemble size, one could also structure the
additional subroutine calls in a way that avoids the ensemble
loop. The possibilities, however, will depend on the number of
processes that are available for the execution of the program. For
efficiency, it is important to ensure that all ensemble members
can be uniformly distributed over the model tasks.

The inserted subroutine calls initialize the assimilation applica-
tion, control the ensemble forecasts, and perform the filter analysis
step. They can be implemented with the following functionality:

! DA_init_parallel: This routine redefines the parallelization
of the program, namely the communicators in the case of

MPI-parallelization. While for the original (forward) model all
processes participate in the integration of a single model state,
the assimilation system might compute several integrations at
the same time. These are performed by the ‘‘model tasks’’, each
with a separate set of processes. Next to these process sets, a
set of processes that compute the analysis step has to be
defined.

! DA_init: Following the initialization phase of the model, this
routine initializes the assimilation system. Necessary para-
meters for the assimilation system are defined, like the size of
the state vector or the number of ensemble members. In
addition, the initial ensemble is read from files. The ensemble
is stored in an array that might be distributed over several
processes.

! DA_get_state: Preceding the integration phase of the model,
this routine initializes model fields from a state vector. In
addition, it defines the number of time steps (‘‘nsteps’’ in
Fig. 1) over which the forecast is computed. During the
forecast phase, it will also define if more ensemble forecasts
should be computed, or if the assimilation sequence is
completed.

! DA_put_state: This routine is called after the integration phase
of the model. First, the routine writes the model fields back
into the array holding the ensemble of model states. Subse-
quently, it checks whether the ensemble forecast is completed
for the model task to which the calling process belongs. If
there are further ensemble states to be integrated by the
model task, the routine is exited and the program will jump
back to the beginning of the ensemble loop. If the ensemble
forecast is completed, the routine for the filter analysis step
will be executed. After the analysis step, the program will
jump back to the beginning of the ensemble loop.

The routines DA_get_state as well as DA_put_state require the
information how the state vectors are related to actual model
fields. These routines also utilize information about the available
observations. In particular, the temporal availability of observa-
tions will define the length of the forecast phase. In addition, the
analysis step requires an implementation of the observation
operator Hk as well as the initialization of the vector of observa-
tions yk. The implementation of these functionalities should follow
two criteria: First, the assimilation routines listed above should be
independent of the definition of the state vector and of the
observations. Second, to minimize the changes to the model code,
one should avoid to perform the operations directly in the model
code. An efficient implementation strategy that fulfills these
criteria is the use of call-back routines. These are routines that
are called by the assimilation routines in order to perform a
specified operation, like the initialization of the observation vector.
It is useful to implement the call-back routines in the context of the
model. For example, if a model uses Fortran modules, these
modules can be utilized in the call-back routines if they provide,
e.g. information about the coordinates of grid points.

To facilitate the implementation of call-back routines for PDAF,
they are designed to include only very elementary operations.
One example is the initialization of the observation vector. An
array in which the observations are stored is allocated within
PDAF. Then, a call-back routine is called to fill the observation
array with the values of the observations. A similar strategy is
followed for the observation operator. In this case, a call-back
routine is called with a state vector x and array for the observed
state vector Hx in its arguments. The task of the call-back routine
is then to compute Hx from X. Finally, also the product ðHdLÞ

TR$1
d ,

which is required in Eqs. (13) and (14), is computed in a call-back
routine. This routine is provided with ðHdLÞ

T and has to perform
the multiplication by R$1

d . This implementation strategy allows

Fig. 1. Left: Flow diagram of a typical numerical model. Right: Flow diagram of the
model extended to an assimilation system by calls to routines of the assimilation
framework. (Based on Nerger et al., 2005b.)
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(almost) Embarassingly parallel setup: Efficiency > 99 % on 1,440 cores.



Closed-loop (twin) experiments with the EnKF
Fournier, Nerger, Aubert (G-cubed, 2013)

Outline:

We solve a time-dependent assimilation problem:

I Generate synthetic data from 1 model free run over ∼ 3, 000 yr: SH
representation of maps of Br at the core surface (truncated at ` = 13 or ` = 5 ,
with noise added, diagonal error covariance matrix)

I Start from t0 using a initial ensemble
(Ne random samples from model free run, outside observation window)
Each member: same control parameters (same as data), different initial
condition

I Assimilate synthetic observations every 25 yr for 3,000 yr to correct the
trajectory of each member of the ensemble; let go for another 500 years

I Assess quality of assimilation scheme by comparing the known ’true’ dynamo
state xt and the estimate x̂ (the ensemble average)

x̂ =
1

Ne

Ne∑
e=1

xe

I Retrieval of internal structure
I Forecast quality (see what happens after the stream of observations stops)

We use a rather ’simple’, low-resolution geodynamo model, 90 × 64 × 64. (Size of the

state vector: 106)



Ensemble size

Minimum ensemble size for converged statistics and proper behaviour of filter?

I Surface data truncation ` = 13

I We measure the distance between the estimate x̂ and the synthetic truth
xt with normalized quadratic misfits

field misfit =

∫ (
B̂ − B t

)2

dV∫
(B t)2dV

. flow misfit =

∫ (
û − ut

)2
dV∫

(ut)2dV
,



Ensemble size
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Retrieval of internal structure: uϕ at mid-depth after 1000 yr

reference est., L=13

est., L=5 est., L=5 (full cov)
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Behavior of the axial dipole

red: truth blue: EnKF estimate
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