MAGMA TRANSPORT THROUGH THE UPPER CRUST

Claude Jaupart

Institut de Physique du Globe de Paris Université Paris-Diderot

Iceland

- 1. Magma transport and storage in the upper crust
- Basics of dyke propagation.
 Importance and relevance of stratification.
- 3. Dyke penetration through layers of different densities
- 4. Sill (reservoir) formation
- 5. Effect of volatiles : precursor phases prior to an eruption

Magma pressure $\Delta P = (\rho_r - \rho_m) g z$

Average crustal density distribution

Average crustal density distribution

Piton de la Fournaise, 1998

Piton de la Fournaise, Reunion Island

Ferrar dolerites, Antarctica

Sill emplacement

Big Bend National Park, Texas
Along bedding plane

FLOW THROUGH A DYKE FLOW THROUGH AN OPEN CHANNEL Open channel (2-D)

> Volume flux $Q \sim (\nabla P) a^3/\mu$ Velocity **c** ~ $(\nabla P) a^2/\mu \sim Q$

Structure of a dyke

Structure of a dyke

Elastic stress to open the fracture $h_e \approx \ell P_e/G$

$$\ell >>1 \rightarrow \text{Pe} << 1$$

Buoyancy \approx viscous head loss

Tail

Equilibrium between buoyancy and viscous head loss

Width

$$h^* = h_{\infty} = \left[\frac{3\mu Q}{2(\rho_s - \rho_m)g}\right]^{1/3}$$

Velocity

$$c^* = \frac{Q}{2h^*}$$

Tail

Equilibrium between buoyancy and viscous head loss

Width

$$h^* = h_{\infty} = \left[\frac{3\mu Q}{2(\rho_s - \rho_m)g}\right]^{1/3}$$

$$c^* = \frac{Q}{2h^*}$$

$$c^* \sim \mu^{-1/3} Q^{2/3}$$

Tail

Equilibrium between buoyancy and viscous head loss

Width

$$h^* = h_{\infty} = \left[\frac{3\mu Q}{2(\rho_s - \rho_m)g}\right]^{1/3}$$

$$c^* = \frac{Q}{2h^*}$$

$$c^* \sim Q^{2/3}$$

Not linear

Nose

Equilibrium between buoyancy and elastic stresses

Length

$$(\rho_s - \rho_m)gL^* = \Delta P^* = \frac{G}{1 - \nu}\frac{h^*}{L^*}$$

$$L^* = \left(\frac{3\mu Q}{2}\right)^{1/6} \left(\frac{G}{1-\nu}\right)^{1/2} \left(\Delta\rho g\right)^{-2/3}$$

Michigan basin strata

Michigan basin strata

For a "typical" basaltic dyke

Governing equations

Momentum equation + mass conservation

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial z} \left[\frac{1}{3\mu} h^3 \left(\frac{\partial P_e}{\partial z} - \Delta \rho g \right) \right]$$

Elastic deformation

$$P_{e}(z) = -\frac{G}{1-\nu}\frac{1}{\pi}\int_{-\infty}^{z_{f}}\frac{\partial h}{\partial\xi}\frac{d\xi}{\xi-z}$$

Stress intensity at dyke tip

$$h(z \sim z_f) \sim \frac{1-\nu}{G} K_c \sqrt{2(z_f-z)}$$

Towards Earth's surface

Penetration into less dense material

Hydrostatic balance in nose region

Hydrostatic balance in nose region

Hydrostatic balance in nose region

Pressure at the interface

$$|\Delta \rho_o g l_-| \sim |\Delta \rho_+ g l_+|$$

$$l_+ \sim l_- \left| \frac{\Delta \rho_o}{\Delta \rho_+} \right|$$

Hydrostatic balance in nose region

Sill intrusion

Big Bend National Park, Texas

Intrusion along an interface !

Goat's Creek, Utah

Nyiragongo

Rifting in Ethiopia

Rifting in Ethiopia

Width of ≈ 8 m and yet almost no eruption

1. Layering in the upper crust affects ascent of dykes

- 1. Layering in the upper crust affects ascent of dykes
- 2. Transient inflation and deflation events occur as a dyke goes through a low density layer

- 1. Layering in the upper crust affects ascent of dykes
- 2. Transient inflation and deflation events occur as a dyke goes through a low density layer
- 3. Large magma overpressures develop at the base of low density strata

- 1. Layering in the upper crust affects ascent of dykes
- 2. Transient inflation and deflation events occur as a dyke goes through a low density layer
- 3. Large magma overpressures develop at the base of low density strata
- 4. Necessary condition for sill formation: low density strata must extend over a minimum thickness (≈ 1 km)

With volatile-rich magma

Small amounts of volatiles

Piton de la Fournaise, 1998 (0.8 wt% H₂O)

Near surface acceleration

Large amounts of volatiles

Mount St Helens, 1980 (5 wt% H₂O)

Volatile exsolution and expansion

Constant mass flux $Q = \rho_m \phi \implies$ volumetric flux ϕ increase

Fragmentation:

The mixture of magma and gas behaves as a "dusty" gas: dense gas with low viscosity. **Equation for magma overpressure (stress at the walls)**

$$\frac{\partial P_e}{\partial z} = -\frac{3\mu}{2h^3}\phi + (\rho_s - \rho_m)g$$

 ϕ volumetric flux

Dyke width and ascent velocity

An increase of the volumetric flux of magma (due to gas exsolution and expansion) can be achieved by two different mechanisms

- acceleration

- widening (swelling)

Dyke width and ascent velocity

An increase of the volumetric flux of magma (due to gas exsolution and expansion) can be achieved by two different mechanisms

- acceleration
- widening (swelling)

Magma pressure acts to

- deform the dyke walls (widening)
- drive magma motion

Small amounts of gas : no fragmentation = enhanced viscous head loss

Equation pour la contrainte aux parois

$$\frac{\partial P_e}{\partial z} = -\frac{3\mu}{2h^3}\phi + (\rho_s - \rho_m)g$$

 ϕ volumetric flux

Fragmentation = reduced head loss

$$\frac{\partial P_e}{\partial z} = -\frac{3\mu}{2h^3}\phi + (\rho_s - \rho_m)g$$

Increase of internal overpressure = increase of stress exerted on the dyke walls

With fragmentation

