

LabEx UnivEarthS Fall School 17-23 October 2015 – Santorini

Phase changes and eruptions in the Universe: VOLCANOLOGY

Edouard Kaminski

Institut de physique du globe de Paris Université Paris Diderot Sorbonne Paris Cité

Physical framework: Earth as a thermal system

Structure of the Earth according to Kircher (1665) with an ancient sun cooling down at its center that produces volcanoes.

Modern view of the cooling of the Earth

q = -k dT/dz (J/s/m² = W/m²) k = thermal conductivity ~ I W/m/K dT/dz = vertical temperature gradient = geotherm

Continental heat flux

Jaupart & Mareschal

Oceanic heat flux

from 50 mW/m² (blue) to more than 500 mW/m² (red)

Labrosse

Quantitative estimate (present day) Rate of variation of energy = production - loss $dE/dt = MC_p dT/dt = S_-P_p$

$dT/dt = (S - P) / M C_{p}$

Heat production = 30 TWLoss = 46 TWCp = 1200 J/s/KM = $6 10^{24} \text{ kg}$

 $dT/dt \approx -70 \text{ K/Ga}$

Quantitative estimate (past) based on the composition of lava

Implies a magmatic ocean at the surface of the early Earth following the giant impact

Structure of the present day Earth: a solid mantle

Heat transfer in the mantle: convection

Forte

Rayleigh number = convection/diffusion = $\rho g \alpha \Delta T h^3 / \kappa \mu$ >> 10³ (Ra critique)

Surface expression of convection: plate tectonics

Tectonic Plates and Boundaries		
View: 🔲 Plates 📕 Plate Boundaries 🗌 Plate Names	e.	
- pulle English		
	- Mar	
Convergent Divergent		

Plate tectonics in the last 260 Ma

Magma are mainly produced at plate boundaries

Explosive eruptions: subduction zones

Dome forming eruptions: subduction zones

Lava flows: oceanic ridges

Lava flows: hot spots

Production of magma in the Earth mantle

Partial melting: experiments

TABLE 1. Phases, and Their Components, That Are Most Probably Present in the Upper Mantl				
Olivine	Clinopyroxene	Orthopyroxene	Spinel	Garnet
Mg₂SiO₄ Fe₂SiO₄	CaSiO ₃ MgSiO ₈ FeSiO ₃ NaFeSi ₂ O ₆ NaAlSi ₂ O ₆ CaTiAl ₂ O ₆ CaAl ₂ SiO ₆	MgSiO3 FeSiO3 MgAl2SiO6	MgAl₂O₄ FeCr₂O₄	Mg3Al2Si3O12 Fe3Al2Si3O12 Ca3Al2Si3O12

Mantle = peridotite = Fo + Opx + Cpx + Gar

Partial melting: experiments

Kushiro

Partial melting: geotherm and solidus

Melting by decompression

Partial melting: geotherm and solidus

Melting due to addition of water

Partial melting: e.g. under a ridge

Mc Kenzie

Melt circulation = compaction

Magma formation and drops coalescence.

 Magma drops forming at crystals intersect

Theory of compaction in viscous mantle

$$0 = -(1-\phi)g\Delta\rho + \frac{\eta_{\rm f}\phi}{k_{\phi}}(w-W) + \left(\zeta_{\rm s} + \frac{4}{3}\eta_{\rm s}\right)\frac{d^2W}{dz^2}$$

balance of 3 forces : relative melt buoyancy melt viscous resistance to flow viscous resistance of matrix to deformation

Scaling analysis

 $\phi' = \phi/\phi_0$

 $z' = z / \left[\frac{k_0 (\zeta_s + 4\eta_s/3)}{\eta_f} \right]^{1/2} \equiv z / \delta_c$

 $k_0 = Ca^2 \phi_0^n$

Scaling analysis

$$R = \frac{k_0 g \Delta \rho}{\phi_0 U_0 \eta_{\rm f}}$$

Model prediction

Ribe

Model prediction

$$\delta_R = R^{-1/2} \delta_c = \left[\frac{\phi_0 U_0 (\zeta_s + 4\eta_s/3)}{g \Delta \rho} \right]^{1/2}$$

Compaction occurs over a length \approx 0.1/1 km then melt flows according to Darcy's law

$$\boldsymbol{u} - \boldsymbol{U} = \frac{k_{\phi} g \Delta \rho}{\eta_{\rm f} \phi}$$

Model refinement: chemistry

Spiegelman & Kelemen

Chemical reaction (dissolution of cpx) focuses the melt in x10m channels

Melt propagation in the rigid lithosphere

$$0 = -(1 - \phi)g\Delta\rho + \frac{\eta_{\rm f}\phi}{k_{\phi}}(w - W) + \begin{pmatrix} \text{non, Viscous}\\ \text{deformation}_{-}\\ \text{of-matrix}^{dz^2} \end{pmatrix}$$

balance of 3 forces :

relative melt buoyancy (p decreases upward)

(non viscous) resistance of rocks to deformation

melt viscous resistance to flow

Cooling and crystallization in magmatic reservoirs

Reminder: Experiments on partial melting

TABLE 1. Phases, and Their Components, That Are Most Probably Present in the Upper Mantle

Olivine	Clinopyroxene	Orthopyroxene	Spinel	Garnet	
Mg₂SiO₄ Fe₂SiO₄	CaSiO₃ MgSiO₃ FeSiO₃ NeFeSi₀O₅	MgSiO₃ FeSiO₃ MgAl₂SiO₅	MgAl₂O₄ FeCr₂O₄	$\operatorname{Mg_{3}Al_{2}Si_{3}O_{12}}_{\operatorname{Fe_{3}Al_{2}Si_{3}O_{12}}} \operatorname{Fe_{3}Al_{2}Si_{3}O_{12}} \operatorname{Ca_{8}Al_{2}Si_{3}O_{12}}$	
	$\begin{array}{c} NaAlSi_{2}O_{6} \\ CaTiAl_{2}O_{6} \\ CaAl_{2}SiO_{6} \end{array}$		plagioclase		

Peridotite = Olivine + Pyroxene + Plagioclase

Partial melting: experiments

Kushiro

Chemical evolution in magmatic reservoirs

Olivines ----- Pyroxènes ----- Plagioclases

Dike propagation \rightarrow open conduit

Flow in volcanic conduit and relation with eruption regimes

Differential motion between gas and magma

$$W_{magma} = Q / \pi a^2 \rho$$

 $W_{bubble} = 2 \Delta \rho g r^2 / 9 \mu$

$$\frac{1}{\rho} = \frac{nRT}{p} + \frac{1-n}{\sigma}$$

above exsolution level

$$n_s = sp^{\beta}$$

Differential motion between gas and magma

Cashman & Sparks, 2013

Basaltic magma – low viscosity

Basaltic magma – higher gas flux

Movie ETNA

Basaltic magma – higher gas flux

Cashman & Sparks, 2013

Basaltic magma – fire fountains

Viscous magma

Bubbly viscous flow

Woods, 1995

Fragmentation threshold

Figure 3. Variation of the void fraction with pressure for magma-volatile mixtures at high pressure, and in which the volatile content initially has values 1, 2, 3, 5, and 7 wt. %.

Turbulent dusty gas

RAGMENTATION = release of gas

 $\rho u A = Q$

 $-\frac{dp}{dz}$. du $\rho g - f$ ρи dz.

 $f = 0.0025 \frac{\rho u^2}{r}$

Flow acceleration and pressure evolution

$$\frac{dp}{dz}\left(1-\frac{u^2}{u_c^2}\right)=-\rho g-f$$

 $u_c \sim 0.97 (n_0 R T)^{1/2}$

Turbulent particle laden jet

Movie VESUVIUS

An alternative evolution: escape of gas phase

Fig. 10 Typical bubble pair shortly before coalescence. Note the planar shape of the thin separation wall between the bubbles (G303, Table 2)

Burgisser &. Gardner, 2005

Gas loss through conduit walls

Stasiuk et al, 1996

https://youtu.be/3foeTjsFesY

Quantitative modeling

$$\rho_1 \frac{a^4}{\mu} \frac{\Delta P - P_e}{H}$$

mass flux of liquid (along z)

$$q = \rho_{\rm g} \alpha k \left(P - P_{\rm 1} \right)$$

gas loss (through conduit walls)

$$C = \frac{k\mu H^2}{a^3} \frac{\Delta P}{\Delta P - P_e}$$

Jaupart & Allègre, 1991

Gas loss can lead to dome formation

Dome/reservoir coupling

SUMMARY:

key players for explosive vs effusive eruption regime

- properties of magma:
 (i) total amount of dissolved gas
 (ii) viscosity
- flow dynamics:

(i) mass flux / reservoir overpressure(ii) evolution of gas phase (exsolution, expansion and coalescence of bubbles, gas loss...)

Modeling of volcanic plumes

Modeling of volcanic plumes:

1/ generation of pyroclastic flows by the collapse of the volcanic column

From natural flow to theoretical framework: the role of buoyancy

From natural flow to theoretical framework: entrainment and heating of ambient air

Morton, Turner and Taylor, 1956

From natural flow to theoretical framework: conservation equations (1/4)

mass flux:

 $\mathbf{Q} = \mathbf{T}\mathbf{R}^2 \mathbf{W} \boldsymbol{\rho}$

 $\frac{dQ}{dz} = \frac{2\pi R \lambda W}{2}$

From natural flow to theoretical framework: conservation equations (2/4)

momentum flux:

$M = \pi R^2 W \rho W$

 $\frac{dM}{dz} = \pi R^2 \left(\rho_{-} \rho \right) g$

From natural flow to theoretical framework: conservation equations (3/4)

flux of energy:

$\mathbf{E} = \mathbf{T} \mathbf{R}^2 \mathbf{W} \rho \mathbf{C}_{\mathbf{p}} (\mathbf{T} - \mathbf{T}_{\mathbf{a}})^{\prime}$

$\frac{dE}{dz} = \frac{2\pi R \lambda W \rho_{a} C_{b} T_{a}}{2\pi R \lambda W \rho_{a} C_{b} T_{a}}$

From natural flow to theoretical framework: conservation equations (4/4) (reduced) buoyancy flux $\mathbf{F} = \mathbf{\pi}\mathbf{R}^2 \ \mathbf{W} \ (\rho - \rho_{\alpha}) / \rho_0 \ \mathbf{g} = \mathbf{\pi}\mathbf{R}^2 \ \mathbf{W} \ \mathbf{g}'$

> equation of state $(\rho - \rho_{\alpha}) / \rho_{0} = \alpha (T - T_{\alpha})$

 $dF/dz = \pi R^2 W g/\rho_0 d\rho_a/dz$ $dF/dz = \pi R^2 W N^2$

Numerical solution of the equations (1/2)

For a given mass flux: collapse depends on U_{exit}

 $U_{exit} \approx 2 (n R T)^{0.5}$

Numerical solution of the equations (2/2)

The larger the mass flux, the larger the threshold velocity Woods, 1995
Comparison between model predictions and field data

Refined model of turbulent entrainment

$$\lambda = \lambda_{jet} + \frac{1}{2} R^2 g'/W$$

Lab-scale experiments used to constrain the model parameters

Kaminski et al., 2005

Experiments

Comparison between new model predictions and field data

Modeling of volcanic plumes:

2/ maximum height of the volcanic column

3D numerical models

Mass fraction of magma (0.2 wt%) Time = 0000 sec

Suzuki, ERI Tokyo

Scaing analysis

Key parameters: source = F_0 (m⁴ s⁻³) atmosphere = N (s⁻¹)

H (m) \approx F₀^a N^b a=1/4 ; b=-3/4

Test of scaling law

Briggs, 1969

Volcanic plume: effect of wind

Carazzo et al., 2015

Volcanic plume: comparison model/data

Girault et al., 2016

