Evolution of shock waves

Isabelle Grenier AIM, Université Paris Diderot & CEA Saclay Institut Universitaire de France

Supernova 1993J in M81

- different evolutionary phases
 - ★ free expansion: bullet
 - ★ adiabatic expansion (Sedov): constant energy
 - snow-plough expansion: constant momentum

impact crater formation

- shatter-cone striations
- systematic increase of striation angles with distance from the impact
- result from nonlinear waves (front waves) that propagate along a fracture front

lle aux Oies Québec

Sagy, Reches, Fineberg 2002, Nature 418, 310-313 UnivEarthS

Pierre Thomas ENS Lyon

Shoemaker-Levy 9 on July 18, 1994 45 mn after impact at 60 km/s waves visible for weeks

Chicxulub impact, Yucatan KT-transition 66 Myr ago

ᅌ ejecta

- density profile often as power laws => self-similar solutions $ho_{ej} \propto r^{-n}$ piston into interstellar medium (ISM) => forward shock gains mass and slows down
- shocked ISM = piston on ejecta => return shock to convert the ram energy of ejecta to pressure and to slow them down
- contact discontinuity between the two media

 $\blacklozenge v_e \sim v_p \sim v_{shock} \Rightarrow m_p v_p \gg m_e v_e \Rightarrow \mathbf{T_p} >> \mathbf{T_e}$

- ♦ electrons heat up by Coulomb diffusion
 ⇒ delay $τ_{Coulomb}$ (if no plasma effetcs)
- ◆ velocity of forward shock (FS) ≠ velocity of return shock (RS)
 - ⇒ T(shocked ISM) ≠ T(shocked ejecta)
- ◆ but p(shocked ISM) ≈ p(shocked ejecta)
 because subsonic velocities behind shocks
 ⇒ densities (ideal gas):

n(shocked ISM) ≠ n(shocked ejecta)

 RS moves inward wrt FS, but outward wrt the outside observer

density profiles: compression at shock, rarefaction behind expanding shock

f = density, radial velocity, pressure

UnivEarthS

 \bigcirc ex: E_{SN} ~ 10⁴⁴ J supernova with 1.4 M \odot of ejecta expanding into ISM with n = 0.1 H cm⁻³

free expansion: bullet mode

$$\begin{split} \mathbf{M_{ej}} \gg & \frac{4}{3} \pi \mathbf{R^3} \rho_{\mathbf{ISM}} \quad \mathbf{E_{SN}} = \frac{1}{2} \mathbf{M_{ej} v_{ej}^2} \\ & \dot{\mathbf{R}} \approx \mathbf{cte} = \mathbf{v_s} \Rightarrow \mathbf{R} = \mathbf{v_s t} \end{split}$$

as long as M(ejecta) » M(swept up ISM)
 Tycho: 1572

adiabatic expansion

- Sedov phase, self-similar solutions
 - ♦ M(swept up ISM) ≫ M(ejecta) and p(ISM) ≪ p(shocked ISM)
 E ≈ cte thus role of M(ejecta) and p(ISM) ≪
- adiabatic conditions as long as
 - $+ \dot{E}_{rad} ≪ E ≈ E_{SN} ≫ E(swept up mass)$
- \bigcirc thus evolution controlled only by E_{SN} et $ho_{\sf ISM}$
 - dimensional considerations

 $[\mathbf{E}] = [\mathbf{M}] [\mathbf{L^2}] [\mathbf{T^{-2}}] \Rightarrow \mathbf{E} \propto \mathbf{M} \, \mathbf{R^2} \mathbf{t^{-2}}$

UnivEarthS

$$\mathbf{M} = \frac{4}{3} \pi \mathbf{R}^{3} \rho_{\mathbf{ISM}} \Rightarrow \mathbf{E} \propto \rho_{\mathbf{ISM}} \mathbf{R}^{5} \mathbf{t}^{-2} \Rightarrow \mathbf{R}_{\mathbf{s}} = \xi \left(\frac{\mathbf{E}}{\rho_{\mathbf{ISM}}}\right)^{1/5} \mathbf{t}^{2/5}$$

○ indeed if Φ ≈ 1 gathers complexity (inhomogeneities, non-sphericity, etc...) $E_{SN} = \Phi M_{sh,ISM} \left(\frac{dU_{sh,ISM}}{dm} + \frac{dE_{kin,sh,ISM}}{dm} \right) = \Phi \rho_{ISM} \frac{4}{3} \pi R^3 \left(2 \times \frac{9}{32} \dot{R}^2 \right) = \Phi \rho_{ISM} \frac{4\pi}{3} R^3 \dot{R}^2$ power-law solution R(t) = a tⁿ => 3n + 2n - 2 = 5n - 2 = 0 => t^{2/5} then the full equation becomes $E_{SN} = \Phi \frac{3\pi}{25} \rho_{MIS} a^5$ which yields the constant "a"

$$\mathbf{R} = \left(\frac{25}{3\pi\Phi}\right)^{1/5} \left(\frac{\mathbf{E_{SN}}}{\rho_{\rm ISM}}\right)^{1/5} \mathbf{t}^{2/5} \quad \text{and} \quad \mathbf{v_s} = \frac{2}{5} \left(\frac{25}{3\pi\Phi}\right)^{1/5} \left(\frac{\mathbf{E_{SN}}}{\rho_{\rm ISM}}\right)^{1/5} \mathbf{t}^{-3/5}$$

hard X SNIa, free-Sedov transition X IR

Kepler (9/10/1604)

Sedov-radiative transition

 \bigcirc radiative losses: radiated power = L_{rad} = n² Λ (T)

- at the end of Sedov:
 - downstream $T_2 >> 10^6 K$
 - => radiative losses «, inefficient cooling
 - ♦ $T_2 \le 10^6$ K efficient —> important losses

$$v_{c} \propto \left(\frac{E_{SN}}{\rho_{MIS}}\right)^{1/5} t^{-3/5}$$
$$T_{2} = \frac{\mu m}{k} \frac{3}{16} v_{c}^{2} \implies T_{2} \propto t^{-6/5} \downarrow \downarrow$$

UnivEarthS

\bigcirc radiative phase starts when $\tau_{rad} < \tau_{expansion}$

○ radiative losses rapidly become catastrophic:
because T↓ ⇒ n↑ ⇒ losses ↑↑

=> thin shell with dense filaments radiating mostly in the optical (electron recombination lines)

radiative phase

filaments in the optical

Cygnus loop

radiative phase

characteristic scales

$$\begin{split} & R_{PDS} = 14\,pc\,\zeta_{metal}^{-1/7} \left(\frac{E_{SN}}{10^{44}\,J}\right)^{2/7} \left(\frac{n_H}{10^6\,m^{-3}}\right)^{-3/7} \\ & t_{PDS} = 13280\,yr\,\zeta_{metal}^{-5/14} \left(\frac{E_{SN}}{10^{44}\,J}\right)^{3/14} \left(\frac{n_H}{10^6\,m^{-3}}\right)^{-4/7} \\ & v_{PDS} = 413\,km/s\,\zeta_{metal}^{3/14} \left(\frac{E_{SN}}{10^{44}\,J}\right)^{1/14} \left(\frac{n_H}{10^6\,m^{-3}}\right)^{1/7} \end{split}$$

 \bigcirc only momentum conservation (since $E_{tot} \downarrow$)

snow-plough phase: onset with a little pressure push from the hot interior gas where n~10⁻²⁻³ cm⁻³ and L_{rad} are still low and p_{int} ~ uniform acts as a piston on the thin radiative shell

with push

$$\begin{split} &\frac{d}{dt} \left(\frac{4}{3} \pi \mathbf{R}^3 \rho_{\mathbf{ISM}} \dot{\mathbf{R}} \right) = 4\pi \mathbf{R}^2 \mathbf{p}_{\mathbf{int}} \\ &\mathbf{L}_{\mathbf{rad}} \ll \mathbf{p}_{\mathbf{int}} \mathbf{V}^{\gamma} = \mathbf{cte} \\ &\Rightarrow \mathbf{p}_{\mathbf{int}} \propto \mathbf{R}^{-3\gamma} \propto \mathbf{R}^{-5} \\ &\Rightarrow \frac{d}{dt} \left(\mathbf{R}^3 \dot{\mathbf{R}} \right) \propto \mathbf{R}^2 \mathbf{R}^{-5} \\ &\text{solution as } \mathbf{t}^{\mathbf{n}} \Rightarrow 4\mathbf{n} - 2 = -3\mathbf{n} \Rightarrow \mathbf{n} = \frac{2}{7} \\ &\mathbf{R} \propto \mathbf{t}^{2/7} \quad \text{and} \quad \dot{\mathbf{R}} = \mathbf{v}_{\mathbf{s}} \propto \mathbf{t}^{-5/7} \end{split}$$

later without push

$$\begin{split} &\frac{d}{dt} \left(\frac{4}{3} \pi \mathbf{R}^3 \rho_{\mathbf{ISM}} \dot{\mathbf{R}} \right) = \mathbf{0} \\ \Rightarrow \mathbf{R}^3 \dot{\mathbf{R}} = \mathbf{cte} = \mathbf{R}_{\mathbf{c}}^3 \dot{\mathbf{R}}_{\mathbf{c}} \\ &\mathbf{3n} + \mathbf{n} - \mathbf{1} = \mathbf{0} \Rightarrow \mathbf{R} \propto \mathbf{t}^{1/4} \\ &\mathbf{R} = \mathbf{R}_{\mathbf{c}} \left[\mathbf{1} + \frac{4 \dot{\mathbf{R}}_{\mathbf{c}}}{\mathbf{R}_{\mathbf{c}}} (\mathbf{t} - \mathbf{t}_{\mathbf{c}}) \right]^{1/4} \\ &\dot{\mathbf{R}} = \mathbf{R}_{\mathbf{c}} \left[\mathbf{1} + \frac{4 \dot{\mathbf{R}}_{\mathbf{c}}}{\mathbf{R}_{\mathbf{c}}} (\mathbf{t} - \mathbf{t}_{\mathbf{c}}) \right]^{-3/4} \end{split}$$

Vela

the forward shock slows down and becomes a normal (elastic) seismic wave at c_{sound}

"isothermal" shocks

entering a dense cloud: slowing down and radiative filaments

SIX1006

stellar winds

UnivEarthS

odM_w/dt ~ 10⁻⁵ M⊙ yr⁻¹, > 1000 km/s radiation pressure driven

single massive star

stellar cluster

N44F superbuble 35 lyr

Image: Image: Image: Amage: Am

zoom on the radiative shock

strong radiative losses => very thin radiative zone radiative cooling rate $\Lambda(T) \approx \Lambda_0 T^{-1/2}$ between 10⁵ and 10⁸ K width of the radiative zone = $\ell_{rad} = u_2 \tau_{rad}$

 \bigcirc radiative length scales with u_1^4 :

 $\tau_{rad} = \frac{U_{MISch}}{L_{rad}} = \frac{3}{2} \frac{(n_{i} + n_{e})kT_{2}}{n_{i}n_{e}\Lambda(T_{2})} = \frac{3kT_{2}}{n_{2}\Lambda(T_{2})} = \frac{3kT_{2}^{3/2}}{rn_{1}\Lambda_{0}}$ $T_{2} = \frac{3\mu m}{16k} u_{1}^{2} \implies \ell_{rad} = \left(\frac{3k}{r^{2}n_{1}\Lambda_{0}}\frac{1}{r^{2}}\left(\frac{3\mu m}{16k}\right)^{3/2}u_{1}^{4}\right) \propto \frac{3\mu m}{r^{2}}u_{1}^{4} \propto \frac{3\mu m}{r^{2}n_{1}\Lambda_{0}}\frac{1}{r^{2}}u_{1}^{4} \propto \frac{3\mu m}{r^{2}n_{1}\Lambda_{0}}\frac{1}{r^{2}}u_{1}^{4} = \frac{3\mu m}{r^{2}}u_{1}^{4} = \frac{3\mu m}{r^{2}}u_{1$

fast shock => ℓ_{rad} >> system size ⇒ adiabatic shock (Sedov)

slow shock => very thin shell,

downstream heat radiated away and the shock becomes "isothermal" because $T_3 \approx T_1$ the bulk incident kinetic energy is thermalised by the shock and quickly radiated away

isothermal shock

stationary shock without magnetic field support

 $T_3 \approx T_1$ maintained by radiative losses (and cosmic-ray acceleration)

 $p \sim \rho \quad (\gamma=1)$ Mach number $M_1 = \frac{u_1}{c_s}$ masse: $\rho_1 u_1 = \rho_1$ mvt: $p_1 + \rho_1 u_1$

masse :
$$\rho_1 u_1 = \rho_3 u_3$$

mvt : $p_1 + \rho_1 u_1^2 = p_3 + \rho_3 u_3^2$
 $T_1 = T_3 \Rightarrow c_{s1} = c_{s3} \Rightarrow p_1 / \rho_1 = p_3 / \rho_3$

UnivEarthS

compression ratio for a strong shock
$$(\rho_1 u_1^2 >> \rho_1)$$

mvt : $\rho_1 u_1^2 = \rho_3 + \rho_3 u_3^2$ et masse $\rho_1 u_1 = \rho_3 u_3 \Rightarrow u_3^2 - u_3 u_1 + c_s^2 = 0$
racines : $u_3 = \frac{u_1}{2} \left[1 \pm \left(1 - \frac{4c_s^2}{u_1^2} \frac{1}{j}^{1/2} \right) = \frac{u_1}{2} \left[1 \pm \left(1 - \frac{4}{M_1^2} \frac{1}{j}^{1/2} \right) \right] \approx \frac{u_1}{2} \left[1 \pm \left(1 - \frac{2}{M_1^2} \frac{1}{j}^{1/2} \right) \right]$
racine triviale : $u_2 \approx u_1$

$$u_3 = \frac{u_1}{M_1^2} \implies r = \frac{u_1}{u_3} = \frac{\rho_3}{\rho_1} = \frac{p_3}{p_1} = M_1^2$$

extreme compression not limited by the thermal energy which is quickly radiated away

$$p_3 = \rho_1 u_1^2 - \rho_3 u_3^2 = \rho_1 u_1^2 (1 - \frac{1}{r}) = \rho_1 u_1^2 (1 - \frac{1}{M_1^2}) \approx \rho_1 u_1^2$$

- expansion speed v_{exp} ~ 20-100 km/s
- "isothermal" forward shock: T(shocked ISM) \approx T(outside ISM) \approx 10⁴ K
- adiabatic return shock (standing shock)
 - c_s (shocked wind) ~ 500 km/s >> v_{exp} => subsonic

so nearly isobaric conditions

 \Rightarrow p(shocked ISM) \approx p(shocked wind) = p

```
p = d(mv)/dtdS flux of the wind
```

at the level of the return shock (RS) in the upstream frame

$$egin{aligned} \mathbf{v_{shocked\,wind}} &= \left(\mathbf{1}-rac{\mathbf{1}}{\mathbf{r}}
ight)\mathbf{u_{1}} \ &= \left(\mathbf{1}-rac{\mathbf{1}}{\mathbf{r}}
ight)\mathbf{v_{w}} \end{aligned}$$

X

$$\mathbf{p} = \frac{1}{4\pi \mathbf{R_{RS}^2}} \dot{\mathbf{M}}_{\mathbf{w}} \left(1 - \frac{1}{r}\right) \mathbf{v}_{\mathbf{w}}$$

UnivEarthS

 $\Phi = 1 - \left(rac{\mathrm{R_{RS}}}{\mathrm{R_{FS}}}
ight)^{\mathbf{3}}$

 \bigcirc simplifications: the hot gas occupies a constant fraction Φ of the volume

pushed snow-plough, pushed by the common pressure p of the shocked wind and ISM

$$\frac{d}{dt}\left(\frac{4}{3}\pi R^{3}\rho_{\text{HII}}\dot{R}\right) = 4\pi R^{2}p \quad \Rightarrow \quad \frac{p}{\rho_{\text{HII}}} = \dot{R}^{2} + \frac{1}{3}R\ddot{R} \qquad (1)$$

wind kinetic energy powers the thermal energy of the shocked wind and the pressure work for the expansion

$$\dot{\mathsf{E}}_{\mathsf{v}} = \frac{1}{2} \dot{\mathsf{M}}_{\mathsf{v}} \mathsf{v}_{\mathsf{v}}^{2} = \frac{\mathsf{d}\mathsf{U}_{\mathsf{int}}}{\mathsf{dt}} + \mathsf{p} \frac{\mathsf{d}\mathsf{V}}{\mathsf{dt}} = \frac{\mathsf{d}}{\mathsf{dt}} \left(\frac{3\mathsf{p}}{2} \frac{4\pi\Phi}{3} \mathsf{R}^{3} \frac{1}{j} + \mathsf{p} \frac{\mathsf{d}}{\mathsf{dt}} \left(\frac{4\pi\Phi}{3} \mathsf{R}^{3} \frac{1}{j} \right) \right)$$

$$(1) + (2) \Rightarrow \mathsf{R}^{4} \ddot{\mathsf{R}} + 12\mathsf{R}^{3} \dot{\mathsf{R}} \ddot{\mathsf{R}} + 15\mathsf{R}^{2} \dot{\mathsf{R}}^{3} = \frac{3}{2\pi\Phi} \frac{\dot{\mathsf{E}}_{\mathsf{v}}}{\rho_{\mathsf{HII}}}$$

solution en R = atⁿ \Rightarrow 15n – 9 = 0 \Rightarrow n = 3/5

$$\mathsf{R} = \left(\frac{125}{154\pi\Phi}\right)^{1/5} \left(\frac{\dot{\mathsf{E}}_{\mathsf{v}}}{\rho_{\mathsf{HII}}}\right)^{1/5} t^{3/5}$$

✓ rapid expansion in rarefied, ionized wind bubble e-+ions gas ⇒ <m> = 0.6 m_p

shock $10^4 \text{ km/s} \Rightarrow T_2 = 1.3 \ 10^9 \text{ K} \dots$

ejecta impact on the thin bubble shell

UnivEarthS

Supernova 1987A • November 28, 2003 Hubble Space Telescope • ACS

bow shocks

- stellar winds, pulsar winds, magnetospheric bows
- again double shock structure to slow down the outside medium and to slow down the inner wind so that they can "meet" in pressure, standing shocks

and the second

shock waves

UnivEarthS

Chelyabinsk meteor: 15/2/2013

- ♦ 19.2 km/s => $E_{kin} \approx 1.8 \text{ PJ}$
- ← exploded at altitude \approx 30 km

Wind velocity: 20m/s at 30km altitude

er observa

model

80m/s at 50km altitude

000000000

relativistic wind of (e+,e-) pairs (> TeV)

pulsar bow shock

la souris CXO radio

CXO opt

PSR 1957+20 veuve noire

relativistic jet

UnivEarthS

extra-galactic jet powered by the central supermassive black hole

in blue: hot gas in the cluster of galaxies (10 times more than the mass of the galaxies)

ejections

sounds

in the large gas mass in a cluster of galaxies

Galaxy C153 in Cluster Abell 2125

galaxy dive

NASA, W. Keel (University of Alabama), F. Owen (National Radio Astronomy Observatory), M. Ledlow (Gemini Observatory) and D. Wang (University of Massachusetts) STScI-PRC04-02a

1 and 1

shock between galaxy clusters

