shock acceleration

Isabelle Grenier AIM, Université Paris Diderot & CEA Saclay Institut Universitaire de France

cosmic-ray spectrum

UnivEarthS

diffusion on magnetic field:

change direction, but no work on the particle

2nd order Fermi acceleration

β, Ε

> E

 uses bias towards head-on collisions to effect acceleration because more frequent head-on than trailing collisions (cf running in the rain)

Fermi 1949

V

the strange case of cosmic rays Frank Capra

E' < E

1st order Fermi acceleration

opposite side symmetrically « arrives » at v_s(1-1/r) = ¾ v_s if compression ratio r = 4
magnetic diffusion (in angle) on δB waves in each medium => particles isotropized <v> = 0 shock without collisions !

=> frontal racket swing at each crossing of the shock

 δ B generation

+ upstream: Alfven waves generated by the cosmic rays (stream instability)

- downstream: + turbulence
- mean free part (90°) and diffusion coefficient (random walk):

$$\lambda_{diff} = R_{giration} (B/\delta B)^2$$
 $D_{diff} \approx \frac{1}{3} \lambda_{diff} v_{part.}$

∮ermi

adiabatic invariant p²/B = cte magnetic mirror...

particule and B "ignore each other"

angular diffusion $\Delta \alpha \sim \Delta B/B0$ centre of curvature drifts r ~ Rg $\Delta \alpha$

 \bigcirc Bell '78, Axford '77, Blandford & Ostriker '78 resonant scattering if Rg $\approx \lambda$ and growth of Alfven waves (λ) in the upstream medium

1st order Fermi acceleration

kinematic gains in shock crossings to accelerate particles => diffusive shock acceleration

∮ermi

€ermi

shock frame

steady-state scenario, particle distribution function in momentum p: \bigcirc the integral F(p) follows the equation

$$0 = t_{cyc} \frac{d\mathcal{F}}{dt} \equiv -\langle \Delta p \rangle \frac{d\mathcal{F}}{dp} - P_{esc}\mathcal{F} , \quad \mathcal{F}(p) = \int_{p}^{\infty} f(p_{1}) dp_{1} \quad \overrightarrow{u_{2}} = \mathbf{I}_{p}$$

Output is a stream of the s density n(x) of particles with velocity c

$$\mathbf{J} = -\mathbf{D_1} \overrightarrow{\nabla} \mathbf{n} + \overrightarrow{u_1} \cdot \mathbf{n} \Rightarrow \mathbf{0} = -\mathbf{D_1} \frac{\partial \mathbf{n}}{\partial \mathbf{x}} - |\mathbf{u_1}|\mathbf{n} \Rightarrow \mathbf{n}(\mathbf{x}) = \mathbf{n_0} \mathbf{e^{-u_1 \mathbf{x}/D_1}}$$

 \bigcirc downstream advection with u_2 away from the shock ratio of fluxes crossing and downstream =>

 $4\mathbf{u_2}$

for isotropic distributions on each side, average gain power-law solution to the kinetic equation complete lack of energy scale spectral index independent of $f(p) \propto p^{-\sigma}$, $\sigma = 1 + \frac{p P_{\text{esc}}}{\langle \Delta p \rangle} = \frac{r+2}{r-1}$, $r = \frac{u_1}{u_2}$. diffusion properties, B strength,

obliquity... only gas compressibility

 $\Delta \mathbf{p}$

 $\frac{4u_1(u_1-u_2)}{3u_2c}$

acceleration efficiency

acceleration rate

∮ermi

very high acceleration efficiency above 4 keV

★ \approx 2.5% of proton density in suprathermal part

* > 25% of energy flux crossing
the shock to supra thermal protons

0

interplanetary shocks

∮ermi

old point of view

magnetic "foam" reality

UnivEarthS

SN1006

 \bigcirc X-ray synchrotron radiation from \approx few 10 TeV electrons accelerated at the shock

 p_{CR} + $p_{SNR} \rightarrow \pi^0 \rightarrow 2 \gamma$ $e_{\text{CR}} + \gamma_{\text{IR}} \to \gamma$

signature of proton acceleration

Fermi sub-GeV spectrum: proton emission

$p_{\text{CR}} \textbf{+} p \rightarrow \pi^0 \rightarrow 2 \ \gamma$

UnivEarthS

IR opt y

nova thermonuclear explosion

UnivEarthS

nova 10³⁷ J = P(Sun)*1000 years shock speed 44 Mkm/h

1 to 2 nova per year

Feb. 19 to March 9, 2010

Centaurus A jet lobes

- feedback of accelerated particles on the shock
 - + gas adiabatic index $\gamma = 5/3 \longrightarrow 4/3$: more compressible (compression ratio r = 4 \longrightarrow 7)
 - ✦ added particle pressure
 - shock precursor => particles with different gyroradii "see" different r ratios => different spectral indices
 - ◆ current leakage from escaping particles => Bell instability (Alfven wave spiraling along B, its radius grows as B increases)
 => strong B amplification δB/B ≈ 10, then δB/B —> 400 as loops advected near the shock

UnivEarthS

Earth bow shock

quasi-parallel shock data (H⁺, He²⁺, CNO⁶⁺, AMPTE data) consistent with non-linear (feedback) acceleration

∮ermi

\bigcirc thin X-ray synchrotron front => B ~ 50 nT >> r × B_{ISM}

Spitzer Space Telescope • MIPS Hubble Space Telescope • ACS Chandra X-Ray Observatory

B amplification

1. The X-ray emissivity for X-ray energies $2.7 < \epsilon_v < 9$ keV

∮ermi

large fraction of the shock energy goes to particle acceleration

un-modified shock

modified shock with magnetic field amplification

observations

unexpectedly low T in X rays behind some shocks

Ferrand et al. 2014