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Stevenson's [2007] figure conveys the idea that we have
an initial condition, an evolutionary path, a present state.

This-That (?!?) it does not matter
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Initial condition
-nature and origin of Earth's constitutive material (i.e., our 'cosmic heritage')
-the physics of the formation processes
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Evolutionary path
-processes in the Earth's interior, e.g., mantle convection and plate tectonics

Let's start from the Present state



The Earth's topography and bathymetry

[Wieczorek, 2007]
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l. Spreading Ridges
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see also Labrosse & Jaupart, 2007
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Ages of the ocean floor

Thickness of the lithosphere
is proportional to (age)?

Global heat flow map

Current average heat flow in
the ocean basin is ~100 (mW/m?)

Total heat flow from the oceans
Q ~29TW > Q ~14 TW

oceans continents

Most of the heat is lost because
of sea-floor spreading

[Jaupart & Mareschal book 2011]



Il. Subduction zones
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Subduction zones are characterized by explosive volcanoes

| Baker
| Glacier Pk.
| Rainier
| St. Helens
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| Hood
| Jefferson
| Three Sisters priesey
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Subduction zones are seismically active
90 % of all seismic energy is liberated at subduction zones
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Basic seismic tomography
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- PREM the reference model for seismic
velocity vs. depth

- Calculate for each seismic path the
theoretical arrival time.

- Compare it with observed arrival time.

- Find seismic velocity anomalies along
each path

Negative anomaly AV <0
suggests AT >0 (hot zones)
Positive anomaly AV >0
suggests AT <0 (cold zones)



Tomographic images across subduction zones
We see slabs into the lower mantle
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Figure 2. Series of mantle cross-sections through the recent P-wave model of Karason & van
der Hilst (2000) to illustrate the structural complexity in the upper-mantle transition zone and
the regional variation in the fate of the slabs. Dashed lines are drawn at depths of 410, 660 and
1700 km, respectively. The model is based on short-period, routinely processed P, pP and PKP
travel-time residuals (Engdahl et al. 1998) and a large number of PP-P and PKP-Pdiftf ditfer-
ential times measured by waveform cross-correlation from long-period seismograms.



Proportion de la frontiére de plaque
prise dans une zone de subduction (en pour cent)
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Subduction zones and forces that drive plate motion

Ridge push and Slab pull forces
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S =] 100 105 110

d'aprés Tapponnier et al., Science, 2001

La convergence (~2000 km de raccourcissement crustale) est absorbée
par les plissements des roches
par les chevauchements
par les failles décrochantes



rzZone de N
subduction

+

Expériences de Tapponnier et al. 1982

A' coté : étapes d'indentation d'un bloc rigide dans un bloc
de plasticine, libre de se déformer. La carte montre la
tectonique d'extrusion en Indochine il y a 50-20 Ma (*)
et de la Chine depuis 20 Ma (*’ ) suite a la collision

de I'lnde (@ )



IV. Intraplate volcanism
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Oceanic crust
older than 150

150 Ma PLATESAMUTIG
Volgian (Late Jurassic) August 2002

N
&

Note : the supercontinent Pangea formed ~400Ma ago and started to break ~180Ma ago
Before Pangea other supercontinents formed, e.g., Rodinia ~1 Ga ago, Columbia ~2 Ga ago
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2000°C

670 km

Temperature

These are surface
expressions of

‘ rzgookm mantle convection

5155 km

3000°C
3800°C

6000°C

GRAINE 6370 km

modifié de Anzellini et al., 2013



Mantle convection
numerical simulations and laboratory experiments

Temperature contrast AT=T,  -T,  ~2500 K
I — - 3
,OOéATng density p= 330054000 kg/m
Ra = thermal exp. coeff. o =5 10° K
kn mantle depth D = 2900 km

thermal diffusivity K =10°m?/s
mantle viscosity 1 =10%"-10¥ Pa s

§ Governing equations : conservation of mass, momentum, energy
§ For the simplest case solve for a purely thermal, incompressible

viscous fluid, cooled from above and heated at the bottom, at infinite
Prandtl number (ratio of viscous/thermal diffusuion rate is ~102%).

§ For a more 'realistic' case solve for a compressible viscous fluid (p, a,
N are depth dependent), with complex rheology, chemical heterogeneities



Purely basally heated convection

Temperature profile : Temperature variations are confined to two thermal boundary
layers (TBL), whose thicknesses and temperature drop are identical.
Temperature in the convective fluid is adiabatic.

Instabilities : develop
from the bottom TBL
(hot rising plumes) and
from the top TBL

(cold downwellings)

Rayleigh-Bénard
convection:
>Ra leads to a chaotic

state of convection,
highly time-dependent

Simulations by F. Dubuffet



Purely internally heated convection
due to radiogenic heating from U, Th, K

Temperature profile: Only a cold, top TBL. The
average temperature has a subadiabatic gradient
(Parmentier et al., 1994).

Instabilities : Develop only from the cold, top TBL.
Mantle fluid is rising passively, i.e., without being
pushed up by a positive buoyancy
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Simulations by Parmentier & Sotin, 2000



Purely internally heated convection with laboratory experiments ?
YES, we can!

[Limare et al., 2013]

cold isothermal plate

A challenge :

Uniformly heat 4.5 liters of fluid,
for several hours, in a microwave
oven.

Be able to measure temperature
and velocity field inside the
convecting fluid (at high Ra , )

laser sheet

5cm

PIV camera



Purely internally heated convection with laboratory experiments ?
YES, we can!

19.3°C 7

23.4°C

L 0.0002Ms

e S T O

(see Limare's and Kenda's posters)

tank depth (m)

Mantle convection and radiogenic
internal heat production....

e
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0.05 : : : .
0 5 10 15 20 25
horizontally averaged temperature (*C)




Earth’s surface heat flow 46 + 3 (47 £ 2)

Present day radiogenic heat flow (TW)

Mantl l
b’ 13 from the mantle+7 from the crust= 20

(18 TW)

Radiogenic Power
Total Heat flux (46 TW)

Urey ratio =

Mantle R*

(13 TW) Convective Urey ratio 13/46=0.28

(0.4 TW) Tidal dissipation
Chemical differentiation

*R radiogenic heat

after Jaupart ef al 2008 Treatise of Geophysics

[Arevalo et al. 2009]

120 1 H
| Absolute Radiogenich-'le:t ’:I:x,. n =20 ppﬁ:'!lf:ha:goEs;tbrj,égggg Som
K produces 20-21 TW radiogenic heat,

s | :Ef\T out of which 7 TW from the crust.
= Total '20%
5 = "Th
c = - el The Depleted Mantle (DMM), today
L 4 - U=5 ppb, Th=20 ppb, K=100 ppm

235, ay produces only 5 TW. Do we need an
\jjﬂu "enriched reservoir" to arrive at 13TW
22, T e e in the mantle?
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c," " (opm)

A hidden mantle reservoir, enriched in radiogenic elements
(and possibly in primordial gases, such as 3He)

10.00 ¢ — | ;
i | | |
I | |
| CC ! =i
1.00 E i 1= :
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ol = = |
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L ] I oy 1 :
| | | y
| BSE | |
i | i
0.01 } | oM | ! :
L e [ Rl A e | 1 g IRE T W T e | & 1 g g gt
107 107 107 10°°
Mass of hidden reservoir (kg)

Figure 1. The possible concentrations of two lithophile incompati-
ble elements (top uranium, bottom aluminum) in the hidden reservoir
as a function of mass of this reservoir are indicated by shadowed
areas. To account for the abundance of the incompatible elements in
the bulk silicate Earth (BSE), the continental crust (CC) and the
shallow mantle (SM) are not enough. A hiddenreservoir is necessary
with a lithophile incompatible concentration larger than in the shal-
low mantle. This reservoir could have a rather small volume (like
that of D”) but be very rich in incompatible elements (with concen-
trations somewhat similar to that of subducted MORBs). Alterna-

[Ricard and Coltice 2007]

Oceanic
5 tsland —

2900 km

[Kellogg et al. 1999]

Origin of 'primordial reservoir’
from magma ocean crystallization

from overturn of an early crust
?



A hidden mantle reservoir, enriched in radiogenic elements
(and possibly in primordial gases, such as 3He)

Continental Crust
K/U = 13,000 £ 3000 (20)
K= 17,000 pg/g, U = 1300 nglg
Radiogenic Heat = 7.3 TW

<0.6 wt% of
silicate Earth

[Arevalo et al. 2009]

Fig. 7. Composition of and radiogenic heat flow from the continental crust, DMM and
OIB source. The estimates of K and U in the continental crust do not take into account
the role of the continental lithosphere, though its contribution is considered negligible.
The continental crust is assumed to have 5.6 ug/g Th, following the model of Rudnick
and Gao (2003), and the DMM 16 ng/g Th, following a mantle Th/U ratio of 3.0.

Geochemical considerations,
coupled with seismic tomography
of the deepest mantle, motivate

us to understand the nature and

the dynamics of a 'hidden' reservoir.

At 2800 km depth

shear velocity variation from 1-D

o0 || | I

[Ritsema et al., GJI, 2011]



Why do we need Thermo-chemical convection ?

TEMPERATURE

A deep layer with the same density
as the overlying mantle is easily
swept up and 'destroyed’' by mantle
convection.

(layer modelled by passive tracers)

) Chaud
0.50 0.75 1.00

Echelle de temperature

TEMPERATURE

A deep layer which is compositionally
denser than the overlying mantle
is more stable and forms ‘hot piles’
of distinct material.
TRACEURS ACTIFS Apy,=3 % (layer modelled by active tracers)

Froid Chaud ; g -
roid I - - ST Chau [Farnetani, 2002, animations for Palais de la Decouverte]
Echelle de temperature




Does sismology support a thermo-chemical origin ?
(rather than a purely thermal origin)

S-wave Bulk sound speed P-wave
"4 V,=( sz -4/3 V?)"? "4

2790 km 27490 lm [#]

[extracted from Masters et al., 2000]

Anticorrelation between S-wave velocity anomalies and bulk sound speed
anomalies suggests a chemical, rather than a purely thermal origin.




Three-Dimensional Simulations of Mantle Convection with a
Thermo-Chemical Basal Boundary Layer: D™?

Paul ]J. Tackley

[Tackley,1998]

The first numerical simulations
with a compressible mantle and
‘primitive’ denser material
show the survival of 'piles’,
far from downwelllings.



Simultaneous generation of hotspots
and superswells by convection in a
heterogeneous planetary mantle

Anne Davaille

[Davaille, 1999]



Simultaneous generation of hotspots
and superswells hy convection in a
heterogeneous planetary mantle

[Davaille,1999]
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Stabilizing chemical density contrast

Buoyancy ratio =

Fluid dynamics laboratory
experiments spanning a
whole range of buoyancy
ratio, viscosity ratios and
thickness of the denser layer.

Find large, vertically oscillating
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Beyond the thermal plume paradigm

nl al 'l 2
C. G. Farnetant and H. Samuel

700
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22100
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Distance (km)

Thermo-chemical convection simulations, 3D compressible mantle.
We find the coexistence of a great variety of plume shapes.
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Plume shapes in
the lower mantle

700 —
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Thermo-chemical
convection simulations

Seismic tomography
across Pacific & Atlantic
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[Farnetani & Samuel, GRL, 2005] [Romanowicz & Gung, Science, 2002]



Shift from classical view To thermo-chemical convection
of whole mantle convection with denser material in the
lowermost mantle

subduction zane

L | continental crust [[] oceanic lithosphere depleted MORB mantle primordial mantle

Albarede and van der Hilst EOS 1999

Next : look at the role of
-subducted oceanic crust
-continents



Subducted oceanic crust (MORB) becomes eclogite
which is compositionally denser than the mantle

Christensen and Hofmann [1994]
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[Ricard and Coltice 2007, calculationd by Matas, 1999]



Influence of combined primordial layering and recycled MORB
on the coupled thermal evolution of Earth’s mantle and core

Takashi Nakagawa' and Paul J. Tackley?

If there is no 'primordial
layer', then the core
cools too rapidly.

If the 'primordial layer' is
global (i.e., covers the
whole CMB) then the core
cools too slowly.

Prefer a spatially
intermittent 'primordial
layer'.

Predict inner core size
~1200km

Figure 5. (top) Thermo-chemical structures at t = 4.5 Gyrs for cases with a primordial layer and three different values of deep-mantle
MORB-harzburgite density difference. The primordial-MORB density difference is fixed at 165 kg/m? (about 3% at the CMB). (bottom |



Future Challenges : coupling between mantle convection and
the thermal evolution/dynamics of the core

[by Julien Aubert]



Mantle convection and the role of continents

MNorth
Amencan
Cordillera

MN025t00 25w .7 [ |25t 07
[107w0538wlS5 PRIBwl]
i 1.7w 0.7

Age en milliards d’années
(En bleu = croute continentale sous-marine)



Planforms of self-consistently generated plates in 3D spherical
geometry

H. J. van Heck! and P. J. Tackley'

Simulations explore the effect of lithospheric yield
stress (a viscosity reduction at high stress)

Colors indicate surface viscosity
blue=weak zones=plate boundaries
red =rigid zones=plate interior

a-b : Low-intermediate yield stress
Spreading centers, subduction zones and oceanic
plates form and are destroyed over time.

c : High-intermediate yield stress
Elongated upwelling and downwelling form roughly
opposite, get two hemispherical ‘oceanic plates’.

d : High yield stress
A rigid lid forms.
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Dynamic Causes of the Relation Between

Area and Age of the Ocean Floor

N. Coltice,* T. Rolf,® P. ). Tackleg,r.3 S. Labrosse™?

.

Area-age distributions

= %] [
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Isochron maps

The distribution of seafloor
ages is important, since it
determines mantle heat loss.

Today we observe a
triangular shape of seafloor
area-age distribution.

It implies that young, hot
oceanic lithosphere can be
subducted.

Why it so ?
Was it so also in the past ?

Numerical simulations !



Dynamic Causes of the Relation Between
Area and Age of the Ocean Floor

N. Coltice,™** T. Rolf,? P. ]. Tackley,? S. Labrosse™*® downwelling Spl’eading I’idgeS

Area-age distributions
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3 continents 15%+10%+5 %
of the surface.

Find: Triangular distribution,
continents impose the
location of subduction

1 supercontinent : 30 %
of the surface

Find: Flat distribution,
seafloor reaches a critical
buoyancy before sinking

6 small continents, each 5 %
of the surface

Find: skewed distribution,
large production of new
oceanic floor



Continents and subduction in the laboratory ?

The initiation of subduction by crustal extension at a continental
margin

F. Lévy* and C. Jaupart

- '
; L

E -F PVC plate (elastic lithosphere) Natrosol 1
e . (continental crust)

A

i

20 cm

Figure 1. Experimental set-up for laboratory experiments. Two different working fluids with different physical properties and elastic sheets of known properties
are used. In one set of experiments (Section 2.2), a slightly different set-up is used. A fixed volume of buoyant fluid is released at one end of the plate and
spreads over the plate. In a second set of experiments (Section 2.3), using the set-up shown here, a lock nitially separates an oceanic-like domain with an
elastic plate resting on dense red fluid and a continental-like domain with buoyant viscous yellow fluid on top of the same red fluid. The lock is lifted at time 7 =
0, allowing the buoyant fluid to undergo extension in the continental domain and spread over the elastic plate. The tip of the plate has a thick front to prevent
leakage of small amounts of buoyant yellow fluid below the plate in the first few seconds of an experiment. In nature, the oceanic plate is thick and does not
allow such leakage.



oceanic plate
--------------------- -

4s

s Large topogra_nphy contrast
-|-Wer ot . ! between c_ontlnentsl and |
oceans drives the spreading
mantle of continental crust over
oceanic basement.

continent

Loading by continental crust
bends the oceanic plate
downwards.

Changing from a passive to
an active margin does not
depend only on the age of
the oceanic lithosphere, BUT
also on the characteristics of
the continental crust

Figure 5. Experiment with two buoyant fluid layers mimicking upper and lower crust. Note that the lower liquid (analogous to the lower crust) does not
spread over a large distance and is missing from the distal region. The fluid properties are p1, = 1010kgm™, p1; = 1090 kgm™, p7 = 1200kgm™3, 0y, =
11.16 Pas, ny; = 1.67 Pas and ny = 3.66 Pas. The plate is 300 pem thick.



Spreading continents Kick-started plate tectonics

Patrice F. Rey', Nicolas Coltice®? & Nicolas Flament'

Continent

Temperature (K)

Figure 1| Numerical solution of an example of continent collapseleading to
subduction. A, a, Modelling setup (0 Myr). b-e, Computed snapshots for a box
700km deep and 6,300 km long including a continent 225 km thick with a
half-width of 800 km. b, 46.7 Myr; ¢, 55.3 Myr; d, 57.2 Myr; e, 123.8 Myr.

All mantle rocks have a limiting yield stress of 300 MPa. Mantle cooler than
1,620 K is in blue (darker blue is hotter); mantle hotter than 1,620 K is in pink
(darker pink is hotter). Regions of depletion due to partial melting of ambient
fertile mantle are hatched. B, Compositional structure, reference densities
and reference rheological profile for the continent (a) and for the adjacent

B a Deviatoric stress (MPa) Reference density (g cm=3)
0 100 300 500 0 28 3.0 32 34
Basaltic crust
40 40
E
< 80 O | Strongly
b= depleted
a . !
0 120 120 '“hni:ﬁrl‘zr'c
Strain rate
160 10—15 5—1
Y-SR Asthenosphere
b 0 100 300 500 0 2.8 3.0 3.2 34
I B scitic crust
__ 40 40
£ 80 80
g
120 _ 120
S:gﬂg ':29 Asthenosphere
160 160

lithospheric lid (b). This numerical solution documents the long phase of
slow continental spreading leading to the initiation of a slab (A, b and ¢).
Once the slab has reached a depth of ~200 km, slab pull contributes to drive
subduction, rollback and continental boudinage (A, ¢) (in some experiments
boudinage leads to rifting) and slab detachment (A, d). In this experiment the
detachment of the slab is followed by a long period of thermal relaxation and
stabilization during which the thickness of the continent increases through
cooling and incorporation of the moderately depleted mantle (A, e).



thermocouples

Generation of continental rifts, basins, and swells
by lithosphere instabilities

upper fluid

Loic Fourel," Laura Milelli,"* Claude Jal,lpz,lrt,l and Angela Limare'

lower disk
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Figure 5. Stable experiment ASTICO 30 (Ra = 164, B = 0.25,h,;/R = 0.067). (a) Photograph in normal
light. Total width of view 1s 30 cm. (b) Laser vertical cross section. (¢) Time evolution of temperatures at
three different depths. Height z is scaled to the unstable block thickness. Temperature fluctuations are only
significant in the ambient fluid and are due to small-scale convection.

(c)
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Figure 6. Unstable experiment ASTICO 24 (Ra =404, B=0.23, hy/R = 0.066). (a) Photograph in
normal light. (b) Laser vertical cross section. (c) Time evolution of temperatures at three different depths.
Note the temperature fluctuations that develop at midheight above the tank base, due to thinning of the ASTICO, Analysis of Stability

isolating lid

laser plane

heating plate

thermal
insulator

dense basal block. and Instability of Continents, 2013



Laboratory experiments, planform of instabilities
radial spokes at the periphery
polygonal cells toward the center
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Geological structures in continents
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Massive intraplate magmatism
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258 Ma . Emeishan Traps 250 Ma : Siberia Trapps

184 Ma : Karoo, Southern Africa - Ferrar Antarctica

125 Ma : Parana-Etendeka Province

65 Ma : Deccan Trapps

62 Ma : North Atlantic Tertiary Igneous Province

30 Ma : Ethiopian Traps 16 Ma : Columbia River



Deccan Traps (65 Ma). Magmatism lasting ~1 Ma.
h__~2000-2400 m. Volume~1-2 10° km®> Surface 500000 km?!

Deccan Traps associated to Reunion hotspot and underlying mantle
plume.
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2900

Classical model of a mantle plume
a large head (forms CFB and oceanic plateaux)
and a narrow tail (forms long-lived hotspot magmatism)

upper mantle

lower mantle




1971, Jason Morgan proposes the
existence of a mantle plume beneath

HOTSPOT TRACK
- b e the Hawaiian hotspot

THERMAL
BOUNDARY LAYER

J. Morgan and G. Bush, 2003
JELOCITY BOUNDARY LAYER



Melting zone
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G* 2013



Rejuvenated
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Photograph of 1000 m of continuous subaerial flood basalt stratigraphy in the Wrangell Mountains, Alaska.
The yellow line marks the contact between Nikolai basalts (~230 Ma) and the overlying Chitistone
Limestone. From Greene et al. (2008)
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