

Origin(s) and early evolution of the terrestrial atmosphere

Bernard Marty

N. Arndt, G. Avice, R. Burgess, P.G. Burnard, D.S. Burnett, M. Chaussidon, E. Hébrard, A. Hofmann, S. Jacobson, M. Kuga, P. Michel, A. Morbidelli, M. Pujol, P. Philippot, L. Zimmermann

Centre de Recherches Pétrographiques et Géochimiques -**CRPG-CNRS** Université de Lorraine, Nancy, France

Collab.: IPGP, Univ. Grenoble, Caltech, Univ. Manchester, Univ. Nice, Univ. Johannesburg

sequence of the 3.4-3.5 Ga-old Dresser formatic Pole, Pilbara, NW Australia

UniVersS Oct. 17, 2014

Earth's atmosphere : 15° C, 1 bar, 0.04 % CO₂, 78 % N₂, 21% O₂, liquid water, signs of life

Earth's surface inventory : P > 100 bar

Venus' atmosphere : 96 bar, 460°C, 96% CO₂, 3.5 % N₂, HCl, H₂S ... Water gone (D/H...)

Mars' atmosphere : -40°C, 0.006 bar, 96% CO_2 , 2.7 % N_2 Very little water (ice at the poles)

1. Origins

2. Processing

Processes that affect the compositions of the atmospheres: escape & exchange with planetary interiors

Isotope/element : two-component mixing

Isotope/element : two-component mixing

Isotope/element : three-component mixing

Formation & Evolution of the Solar System

Hubble Space Telescope Orion Treasury Project Team

Beta Pictoris, European Southern Observatory

Solar-like neon in the mantle

Solar-like neon in the mantle

Solar gas : solution of a primitive H_2 -rich atmosphere in molten proto-earth

Ballentine, 2004

Terrestrial noble gases : mixing between Solar and Chondritic Chondrites:meteorites fragments of primitive asteroids

Delivery of volatile elements to inner planets – the Grand-Tack scenario: the asteroid belt contains primitive material formed in the outer Solar System (Walsh et al. 2011)

Genesis : the composition of the solar nebula from solar wind measurement NASA discovery PI: D.L. Burnett (Caltech)

September 8th 2004

Analysis of N isotopes in Genesis Concentrator at Nancy

SiC

Laser ablation – static mass spectrometry

Pete Burnard & Laurent Zimmmermann

Ims 1280 HR2 ion probe

Stable isotopes suggest that terrestrial volatiles originated from a cosmochemical reservoir that also supplied volatile elements to asteroids

Comets : Bockelée Morvan et al., 2007; Hartogh et al., 2011 Genesis : $^{15}\text{N}/^{14}\text{N}$ in the solar wind, Marty et al., 2011

Ocean-like water in the Jupiter-family comet Hartogh et al., Nature 2011 103P/Hartley 2

Possible caveat : only CN/HCN/NH₂ analyzed on comets, is ¹⁵N-poor protosolar N₂ also trapped in cometary ice ?

Rosetta ! D/H, ¹⁵N/¹⁴N...

1. Origins

2. Processing

Processes that affect the compositions of the atmospheres: escape & exchange with planetary interiors

Volcano-sedimentary sequence of the 3.4-3.5 Ga-old Dresser formation, North Pole, Pilbara, NW Australia

Thermal (mass-related) escape

WHICH GASES CAN ESCAPE?

Non-thermal (charge-related) escape

Credit : ESA

Photodissociation of $H_2O \rightarrow escape of H^+$

Mars' ancient magnetic field dead

Earth's magnetic field : active, since when ?

Ancient atmosphere in Archean (3.5 Ga) rocks

erc

Volcano-sedimentary sequence of the 3.4-3.5 Ga-old Dresser formation, North Pole, Pilbara, NW Australia

atmosphere shielded from interactions (e.g., charge exchange) with solar wind)

Thermal escape negligible but for H, He

- heating up and expansion of exobase
- weaker/no magnetosphere
- Interactions (e.g., charge exchange) with solar wind
- Thermal / non thermal escape ?

Solar wind

Ancient atmosphere in Archean (3.5 Ga) rocks

Paleo-atmospheric gases trapped in ancient chemical sediments

Fluid inclusions in hydrothermal quartz

Archean barite

U-Xe age : 3.5±0.2 Ga

Elements :

$$[X/Y]_{water} = (K_x/K_y) \times (P_x/P_y)_{atm}$$

Isotopes :

$$[^{i}X/^{j}Y]_{water} \approx (^{i}X/^{j}Y)_{atm}$$

1- Nitrogen: onset of terrestrial magnetic field ?

Nitrogen: onset of terrestrial magnetic field ?

Nitrogen: onset of terrestrial magnetic field ?

Nitrogen: onset of terrestrial magnetic field ?

- Nitrogen isotopes : mixing between a crustal end-member and air-saturated water ¹⁵N/¹⁴N in the Archean atm. 3.5 Ga ago ~ modern value
- P_{N2} comparable to Modern \rightarrow no atm. Escape for N since 3.5 Ga

1- Nitrogen: onset of terrestrial magnetic field

Mars: atmospheric nitrogen enriched in ¹⁵N by 60 % relative to Earth : evidence for atmospheric escape through time, no magnetic field Earth: ¹⁵N/¹⁴N in the Archean atm. 3.5 Ga ago ~ modern value : magnetic field since at least 3.5 Ga (*Marty et al., Science 2013*)

Pujol et al., GCA, 2009

Pujol et al., EPSL 2011

Earth : dynamically active planet, exchange of volatile elements between interior and surface

 Mixing correlation between surface water and hydrothermal fluid rich in ⁴⁰Ar and CI

- Mixing correlation between surface water and hydrothermal fluid rich in ⁴⁰Ar and CI
- ${}^{40}\text{K} \rightarrow {}^{40}\text{Ar} (\text{T}_{1/2} = 1.25 \text{ Ga})$ • ${}^{40}\text{Ar}_{\text{initial}} \approx 0$
- Atmospheric ⁴⁰Ar/³⁶Ar = 143±34
 3.5 billion years ago (now 298)

 40 Ar/ 36 Ar = 143±34, indicates enhanced crustal growth (40-85 % modern crust) during the time interval 3.5-2.7 Ga ago (*Pujol et al., Nature 2013*)

Conclusions

- Solar gases present in the mantle of Earth
- Inner planet volatiles : asteroidal origin (but wait for Rosetta data for possible cometary contribution)
- Differences between Venus, Mars and Earth's atmospheres from ≠ interactions between SW and CR ions and magnetic fields
- On Earth, building and preservation of conditions for life emergence appear accidental

Pole, Pilbara, NW Australia

UniVersS Oct. 17, 2014