

Exploring the future of Virgo

<u>Eleonora Capocasa</u>, Matteo Barsuglia, Eric Chassande-Mottin, Sylvain Chaty, Simone Mastrogiovanni, Jérôme Novak, Micaela Oertel, Danièle Steer

Exploratory project proposal - Scientific Committee meeting

16 nov 2020

GW detector network: state of the art

0

0

100

200

300

400

Time (Days)

500

600

- KAGRA LIGO Hanford LIGO India LIGO Livingston Virgo Cumulative #Events/Candidates 01 02 O3a O3b
- 2G network: Virgo, LIGO and KAGRA
- 3 observation runs performed

700

operational

🛧 planned

Observations summary

01-02 (2015 - 2017)

- 11 detections (10 BBH, 1 BNS)
- GWTC-1 first catalog of GW transient sources (2019)

- O3a (2019)
- 39 detections
- GWTC-2 second catalog of GW
 transient sources just published

O3b (2019 - 2020)

- 30 alerts
- Analysis on-going

Scientific results from GW detections so far

- General Relativity
 - Test of GR in strong field regime
 - Properties of GW in agreement with GR
- Astrophysics and cosmology
 - Compact binary parameters (mass, spin, rate) and populations
 - First observation of an intermediate mass black hole
 - Detection of EM counterpart (and associated phenomena) thanks to sky-localization
 - Origin of short gamma-ray burst and heavy elements
 - Independent measurement of Hubble constant
 - Constraints on neutron stars equation of state

Near future observation plan

Near term upgrades: AdVirgo+ and ALIGO+

AdVirgo+

PHASE I (04) - up to 2023

 Reduction of quantum noise

PHASE II (05) -up to 2026

• Reduction thermal noise

- LIGO upgrade A+ with the same schedule
- KAGRA online with a better sensitivity (>25 Mpc)
- LIGO India is expected to join the network in 2025
- ~1000 detections per year expected during O5

What's next?

3G detectors: Einstein Telescope and Cosmic Explorer

- Target: tenfold improvement in the sensitivity with respect to 2G
- ET: 10 km, xylophone configuration, cryogenic, underground
- CE: scale LIGO to 40 km

 3G data taking will start in 2036 at the earliest

Near future observation plan

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

LIGO Voyager

- Intermediate step on the way to ET/CE network
- Use of LIGO infrastructure
- 3G technologies (cryogenic, different wavelength)
- Operation expected in the early 30 and continue in parallel with Cosmic Explorer

What about Virgo?

Goal of the project: exploring Virgo's possibilities after O5

Many questions to be answered

Science

- Which are the scientific targets within the reach of a 2G network after O5?
- What can be the contribution of Virgo?

Instrument

- What are the possible upgrades for the instrument?
- Should we focus on the R&D in preparation for ET?

Contributions to the science

- Observe further away (higher redshift)
 - Improve cosmological parameters estimation
- Increase the total number of signals
 - Population studies
 - More stringent constraints on the binary evolution scenarios
- Higher SNR and post-merger signals
 - Neutron star equation of state
 - General relativity tests
- Better localization for multi messenger astronomy
- Possible other sources (e.g. supernovae)

Instrument upgrades

What is the best upgrade strategy?

- Optimization of the sensitivity with current technologies and configuration (back scattering mitigation, higher power, loss reduction..)
- Testbed for ET: cryogenic operation, new wavelengths..
- High-frequencies detector: optimized for post merger signals
- Continue the data taking to accumulate statistics and possibly exploit multi messenger opportunities

Methodology and deliverables

- Local working group gathering people with different expertise (theory, data analysis and instrument) to tackle both science case and instrument upgrades
- The team will work in close relationship with Virgo-LIGO- KAGRA collaborators
- Organization of workshops and invitation/visit of experts for joint work and discussions
- Two stages (for the first year):
 - 1.Neutron star oscillation modes signature in GW (LUTH)
 - 2.Sensitivity simulation for different possible configurations (APC)

At the end of the project we expect to deliver a document where **different post O5-scenarios for Virgo are quantitatively evaluated** in term of their impact on the science and their practical feasibility

Work-package personnel

Name	Lab	Grade / Employer	Expertise
Eleonora Capocasa	APC	MCF UdP	Instrumentation
Matteo Barsuglia	APC	DR CNRS	Instrumentation
Eric Chassande-Mottin	APC	DR CNRS	Data analysis and population studies
Sylvain Chaty	AIM/APC	Prof UdP	Population studies and binary evolution
Danièle Steer	APC	Prof UdP	Cosmology
Simone Mastrogiovanni	APC	Postdoc APC	Cosmology
Micaela Oertel	LUTH	DR CNRS	Neutron-star and supernova physics
Jérôme Novak	LUTH	DR CNRS	Neutron-star and supernova physics

Budget request - 1st year

Item description	Required budget
2 long internships (LUTH and APC)	6 k€
Missions for WP members, organization 2 workshops, invitation of colleagues from KAGRA, LIGO, Virgo	6 k€
Total costs	12 k€

Summary

- The GW astronomy has already brought a wealth of scientific results and more are expected in the future
- Current plan: 10 year gap in the data taking for the European detectors (2026-2036)
- This project aims to create a local team to explore how to exploit at best Virgo after 2026
- The team work both on the science and instrumental aspects in close relationships with Virgo, LIGO and KAGRA collaborators
- It is expected to deliver a document where different post-O5 scenarios are evaluated in term of scientific impact and technical feasibility

BACK UP SLIDES

Budget request - 2nd year

Item description	Required budget
2 long internships (LUTH and APC)	6 k€
Missions for WP members, organization 2 workshops, invitation of colleagues from KAGRA, LIGO, Virgo	6 k€
Consumables for the R&D lab activity at APC *	8 k€
Total costs	20 k€

* Activity possibly selected according to the outcomes of the R&D review performed the first year

Voyager - Cosmic Explorer timeline

