F1b: Subduction in the past & today




    A full understanding of the subduction process and of its role in the Earth’s evolution requires studying the interplay between different involved physical and chemical processes with complementary contributions from different geosciences disciplines (seismology, geodynamics, tectonics, volcanology, geochemistry…).

    While many of Solid Earth geoscientists are dealing with some aspects of the subduction, most of existing studies are carried out in a frame of a single discipline and complex  approaches to subduction are rare.

    A unique example of such a complex approach is the NSF-funded program Geo-PRISMS (Geodynamic Processes at Rifting and Subducting Margins), while similar initiatives do not exist in Europe or in France. At the same time, the institutions involved in the LabeEx UnivEarthS and in particular the IPGP regroup specialists from a large spectrum of disciplines working on the subduction, providing us with a unique opportunity to take a leadership role in this area.

    Therefore, the main goal of the proposed workpackage is to develop an interaction between these different disciplinary teams and to create a group focusing on complex studies of the subduction processes.


    Active deformation and earthquake activity along the Andean subduction zone in Chile

    Coordinators: R. Armijo (IPG Paris, France), R. Lacassin (IPG Paris), N. Shapiro (IPG Paris), J.P. Vilotte (IPG Paris)

    International collaborations: Universidad de Chile (J. Campos and G. Vargas), Universidad Católica del Norte (G. Gonzalez), GeoForschungsZentrum (GFZ) Potsdam (O. Oncken), University Potsdam (M. Strecker)

    The Andean subduction zone in Chile, associated with the fast convergence of the Nazca plate beneath the South American plate, is one of the most active in the world as attested by the Andes, the largest mountain belt – and high plateau – systems of our living planet, and by the associated seismic activity with four mega earthquakes and tsunamis in the last 120 years. Scientific questions today are related to the understanding of the transient and permanent deformation processes, their variations and interactions, along the Chilean subduction zone, that lead to the occurrence of large subduction earthquakes and tsunamis, and to the building of the Andes. A critical step, of important augmented economic and societal implications, is to integrate these different spatial and temporal scales within a geodynamic model.

    The Andean subduction zone in Chile and the associated large subduction earthquakes: the earthquakes rupture area is indicated by the size of the ellipses; and the mean rate and direction of the convergence between the Nazca and the South American plate is indicated by the arrow. The main barriers associated to the segmentation the subduction zone are pointed in this map

    To address these questions, innovative data analysis and data modelling methods are required to exploit the massive data generated by the detailed tectonic and paleo-seismology field studies, the high-resolution observation systems integrating geodesy and seismology monitoring networks operated by the International Associated Laboratory Montessus de Ballore (https://www.lia-mb.net), the French-Chilean initiative between the CNRS-INSU and the Universidad de Chile (Santiago), in which IPGP is one of the main partners, and by the spatial observation systems (InSAR).

    The objectives are :

    1. Detailed analysis of the February 27, 2010 offshore Maule (Mw 8.6, Central Chile) earthquake, in terms of the rupture process, associated crustal deformation and crustal property changes, of its implication in term of the seismic hazard in the northern part of Central Chile – in particular the Valparaiso region. This analysis will exploit the extensive seismological (at regional and global scales), geodetic and geological data that are today available with unprecedented accuracy, before, during and after the event. Lessons to be learned from the offshore Maule earthquake will have important implication and applications for further study of the seismic hazard in northern Chile.
    2. Study of the permanent deformation, associated to the growth of the Andean orogeny by tectonic shortening, measured over the 103-107 yr time scale, which is barely longer than the seismic cycle for subduction earthquakes. We want to characterise the evolution of the west-vergent geological structures in relation with the subduction processes and to construct a mechanical model involving tectonic accretion at the subduction interface consistent with the tectonic and morphological evolution of the Central Andes and the Altiplano. This will imply new field observations that will be collected during this project.

    This project is supporting a postdoc, and a number of tectonic field studies, sampling and dating.


    Position Name Laboratory Grade, employer
    WP leader Nikolai Shapiro IPGP DR CNRS
    WP member Anne Le Friant IPGP DR CNRS,
    WP member Nathalie Feuillet IPGP Physicienne , IPGP
    WP member Guyard Hervé IPGP Post-Doc
    WP member Seibert Chloé IPGP PhD/IPGP
    WP member Pierre Agrinier IPGP Professor, IPGP
    WP member Alberto Roman IPGP Post-Doc
    WP member William Frank IPGP Post-Doc
    WP member Jean Soubestre IPGP Post-Doc
    WP member Léonard Seydoux IPGP PhD/IPGP
    WP member Kairly Jaxybulatov IPGP PhD/IPGP
    WP member Sergey Abramenkov IPGP PhD/IPGP




    During three years of the WP F1b, we followed the proposed plan and worked in the two target regions: the Lesser Antilles and the Kamchatka subduction zones. We analyzed and interpreted of previously collected data and performed new field experiments. We also worked on the analysis of geophysical data from other subduction zones (Mexico, Indonesia) that contribute to understanding of active seismogenic and volcanic processes.

    This work resulted in several publications and presentations at international scientific meetings. The support from Labex also helped us to obtain other funding are used to extend our studies of the subduction zone dynamics in the two target regions. The expertise developed by our team in the Lesser Antilles thanks to the support of the Labex program WP F1b allows for developing a new research program on the Ryukyu subduction zone in Japan in collaboration with colleagues of the TOKYO University and the Earthquake Research Institute. The program began in January 2016. It was funded by INSU in 2017.

    Thanks to the expertise acquired during the Labex program on subaqueaous paleoseismology and volcanology, two young researchers (who get their PhD at IPGP) were selected to participate to to Expedition IODP 372 in 2017 (Morgane Brunet) and IODP expedition 381 in 2018 (Gino de Gelder).


    A – Petites Antilles

    Pour contraindre un large éventail de processus volcaniques, tectoniques et d’érosion dans les Petites Antilles afin de caractériser un système volcanique intégré, permettant l’évaluation des flux de masse à l’échelle de tout l’arc, nous nous sommes concentrés sur les sédiments d’offshore profond comme un enregistrement continu d’événements volcaniques extrêmes, de tremblements de terre, de pertes de masse et de processus d’érosion comme moteurs de l’évolution à long terme (construction et destruction) d’un arc volcanique aux marges convergentes. Cela a nécessité la création d’une nouvelle équipe multidisciplinaire (volcanologie, tectonique, géophysique marine et sédimentologie) qui doit travailler à une meilleure compréhension de l’évolution de l’arc volcanique à une échelle qui comble l’écart entre les études volcanologiques locales conventionnelles à terre et les études géodynamiques à l’échelle des plaques.

    La base de données a été enrichie de 42 carottes pour un total de 510 m de sédiments et de nouvelles données géophysiques lors de la campagne CASEIS entre le 27 mai et le 5 juillet 2016 sur le navire de recherche français Pourquoi Pas ?”.

    L’ensemble de données disponibles dans les Petites Antilles est maintenant exceptionnel, couvrant des échelles de temps et d’espace jamais atteintes dans d’autres arcs volcaniques dans le monde. Nous aurons le potentiel d’accéder à l’histoire de 4 millions d’années d’événements extrêmes ayant eu un impact sur l’ensemble de l’arc sur des distances de plusieurs centaines de kilomètres.


    B – Kamchatka


    B-1 Échantillonnage géochimique des sources d’eau pour les flux de C et de Cl

    En 2017, nous avons poursuivi la construction d’un modèle pour l’injection de carbone des réservoirs de surface dans le manteau via des zones de subduction et pour le flux de retour à la surface via le magmatisme de l’arc.

    B-2 Études sismologiques des volcans actifs

    Nous avons poursuivi l’analyse des données des stations sismiques permanentes exploitées par la branche Kamchatka du Service géophysique russe (ces données ont été obtenues grâce à une collaboration établie dans le cadre du projet labex). Tout d’abord, nous avons développé une nouvelle méthode pour détecter et localiser les tremblements volcaniques (Shapiro et al., 2014, 2015 ; Droznin et al., 2015). Ensuite, nous avons effectué une étude de la sismicité volcanique à longue période et établi sa relation avec la préparation des éruptions volcaniques (Shapiro et al., 2016).

    B-3 Études géodésiques du cycle sismotectonique dans la zone de subduction du Kamchatka.

    Grâce à notre collaboration avec la branche Kamchatka des Etudes géophysiques russes, nous avons obtenu les enregistrements des stations GPS permanentes opérant dans la péninsule depuis 2005. L’analyse initiale de ces séries chronologiques a révélé quelques épisodes de déformation transitoire précédant le séisme profond de la mer d’Okhotsk de 2013 (Walpersdorf et al., 2016).


    C Autres zones de subduction


    En plus des études aux Petites Antilles et au Kamchatka, nous avons travaillé avec les données d’autres zones de subduction. L’ensemble de données sismologiques du Mexique a été utilisé pour étudier le rôle des séismes lents dans le cycle sismotectonique (Frank et al., 2016). En Indonésie, nous avons effectué une série d’études de tomographie sismique de volcans actifs (Koulakov et al., 2016b,c ; Jaxybulatov et al., 2016). Nous avons également développé un nouveau programme de recherche sur la zone de subduction de Ryukyu au Japon en collaboration avec l’université TOKYO et le Earthquake Research Institute. Le programme a débuté en janvier 2016. Il a été financé en 2017 par le CNRS-INSU et nous avons déjà effectué 3 sorties sur le terrain pour analyser les microatolls coralliens afin de mieux contraindre le cycle sismique de la tranchée de Ryukyu. Les résultats préliminaires ont été présentés lors de plusieurs réunions internationales.



    Outcome directly supported by Labex UnivEarths

    Peer Reviewed articles



    Philippot, P., Van Zuilen, M., and Rollion-bard, C., 2012. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nature Geoscience 5, 668-674

    Kumar, A., Nagaraju, E., Besse, J., and Rao, B., 2012. New age, geochemical and paleomagnetic data on a 2.21 Ga dyke swarm from south India: Constraints on Paleoproterozoic reconstruction. Precamb. Res. 220, 123-138.



    Teitler, Y., Le Hir, G., Fluteau, F., Philippot, P., Donnadieu, Y., 2013. Investigating the Paleoproterozoic glaciations with 3-D climate modeling. Earth Planet. Sci. Lett. 395, 71-80.



    François, C., Philippot, P., Rey, P., Rubatto, E., 2014. Burial and exhumation during Archean sagduction in the East Pilbara Granite-GreenstoneTerrane. Earth Planet. Sci. Lett. 396, 235-251.

    Hardisty, D., Lu, Z., Planavsky, N., Bekker, A., Philippot, P., Zhou, X., Lyons, T., 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42, 619–622.

    Pecoits, E., Smith, M.L., Catling, D.C., Philippot, P., Kappler, A., Konhauser, K.O., 2014. Atmospheric Hydrogen Peroxide and Eoarchean Iron Formations. Geobiology, DOI: 10.1111/gbi.12116.

    Sforna, M.C., Philippot, P., somogyi, A., van Zuilen, M.A., Medoudji, K., Nitschke, W., Schoepp-Cottenet, B., Visscher, P., 2014. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nature Geoscience, 7, 811–815.

    Sforna, M.C., van Zuilen, M.A., Philippot, P., 2014. Structural characterization by Raman hyperstractral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta 114, 18–33.

    van Zuilen, M.A., Philippot, P., Lepland, A., Whitehouse, M.J., 2014. Sulfur Isotope Mass-Independent Fractionation in Impact Deposits of the 3.2 Billion-year-old Mapepe Formation, Barberton Greenstone Belt, South Africa. Geochim. Cosmochim. Acta 142, 429-441.



    Amor, M., Busigny, V., Durand-Dubief, M., Tharaud, M., Ona-Nguema, G., Gélabert, A., Alphandéry, E., Menguy, N., Benedetti, M., Cgebbi, I., Guyot, F., 2015. Chemical signature of magnetotactic bacteria. Proc. Nat. Acad. Sci., www.pnas.org/cgi/doi/10.1073/pnas.1414112112

    Carlut, J., Isambert, A., Bouquerel, H., Pecoits, P., Philippot, P., Vennin, E., Ader, M., Thomazo, C., Buoncristiani, J.-F., Baton, F., Muller, E., Deldicque, D., 2015. Low Temperature Magnetic Properties of the Late Archean Boolgeeda Iron Formation (Hamersley Group, Western Australia): Environmental Implications. Frontiers in Earth Science. http://journal.frontiersin.org/article/10.3389/feart.2015.00018

    Teitler, Y., Philippot, P., Gérard, M., Le Hir, G., Fluteau, F., Ader, M., 2015. Ubiquitous occurrence of basaltic-derived paleosols in the Late Archaean Fortescue Group, Western Australia. Precamb. Res. 267, 1-27.

    Marin-Carbonne, J., Remusat, L., Sforna, M.C., Thomazo, C., Cartigny, P., Philippot, P. Sulfur isotopes signal of nanopyrites enclosed in 2.7 billions year old stromatolitic organic remains reveal microbial sulfate reduction and diagenetic processes in closed system. Proc. Nat. Acad. Sci., submited

    Morag, N., Williford, K.H., Kitajima, K., Philippot, P., Van Kranendonk, M.J., Lepot, K., Valley, J.W. Microstructure -specific carbon isotopic signature of organic matter from ~3.5 Ga cherts of the Pilbara Craton support biologic origin. Precamb. Res., submited

    Droznin, N.M. Shapiro, S.Ya. Droznina, S.L. Senyukov, V.N. Chebrov, and E.I. Gordeev (2015), Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of continuous seismic records, Geophys. J. Int., 203, 1001–1010, doi:10.1093/gji/ggv342.



    Brunet, M., Le Friant, A., Boudon, G., Lafuerza, S., Talling, P., Hornbach, M., Lebas, E., Guyard, H., IODP Expedition 340 scientists, 2016. Composition, geometry and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochemistry, Geophysics, Geosystems 17, doi:10.1002/2015GC006034.

    Coussens M., Wall-palmer D., Talling P.T., Watt S.F.L., Cassidy M., Jutzeler M., Clare M.A., Hunt J.E., Manga M., Gernon T.M., Palmer M.R., Hatter S.J., Boudon G.,  Endo D., Fujinawa A., Hatfield R., Hornbach M.J., Ishizuka O., Kataoka K., Le Friant A. , Maeno F., McCanta M., Stinton A.J. (2016). The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A long-term (>1 Ma) record offshore Montserrat, Lesser Antilles. Geochem. Geophys. Geosyst ., doi:10.1002/2015GC006053.

    Frank, W.B., N.M. Shapiro, A.L. Husker, V. Kostoglodov, A.A. Gusev, and M. Campillo, The evolving interaction of low-frequency earthquakes during transient slip, Science Advances, 2, doi: 10.1126/sciadv.1501616, 2016.

    Koulakov, I., E. Kasatkina, N.M. Shapiro, C. Jaupart, A. Vasilevsky, S. El Khrepy, N. Al-Arifi, and S. Smirnov, The feeder system of the Toba supervolcano from the slab to the shallow reservoir, Nature Communications, DOI: 10.1038/ncomms12228, 2016c.

    Seydoux, L., N. M. Shapiro, J. de Rosny, and M. Landès (2016), Spatial coherence of the seismic wavefield continuously recorded by the USArray, Geophys. Res. Lett., 43, doi:10.1002/2016GL070320.

    Koulakov, I., G. Maksotova, K. Jaxybulatov, E. Kasatkina, N.M. Shapiro, B.‐G. Luehr, S. El Khrepy, N. Al‐Arifi, (2016). Structure of magma reservoirs beneath Merapi and surrounding volcanic centers of Central Java modeled from ambient noise tomography, Geochemistry, Geophysics, Geosystems, DOI: 10.1002/2016GC006442.



    Shapiro N.M., C. Sens-Schönfelder, B. Lühr, M. Weber, I. Abkadyrov, E.I. Gordeev, I. Koulakov, A. Jakovlev, Y. Kugaenko, and V. Saltykov (2017), Understanding Kamchatka’s Extraordinary Volcano Cluster. EOS, DOI: 10.1029/2017eo071351.

    Shapiro, N.M., D.V. Droznin, S.Ya. Droznina, S.L. Senyukov, A.A. Gusev, and E.I. Gordeev (2017), Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer. Nature Geosciences, 10, 442-445, doi:10.1038/ngeo2952.

    Gómez-García C., F. Brenguier, P. Boué, N.M. Shapiro, D.V. Droznin, S. Ya. Droznina, S.L. Senyukov, and E.I. Gordeev (2017), A general formulation for retrieving robust noise-based seismic velocity changes: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka), submitted to Geophys. J. Int.

    Soubestre, J., N.M. Shapiro, L. Seydoux, J. de Rosny, D. V. Droznin, S. Ya. Droznina, S. L. Senyukov, and E. I. Gordeev (2017), Network-based detection and classification of seismo-volcanic tremors: example from the Klyuchevskoy volcanic group in Kamchatka, submitted to J. Geoph. Res.

    Brunet, M., Moretti, L.,  Le Friant A., Mangeney, A., Fernandez-Nieto, Enrique,D., Bouchut, F. (2017) Numerical simulation of the 30-45 Ka debris avalanche flow of Montagne Pelée volcano, Martinique: from volcano flank collapse to submarine emplacement. Natural Hazards, 87-2:1189-1222

    Fraass, A.J., Wall-Palmer, D., Leckie, R.M., Hatfield, R.G., Burns, S.J., Le Friant, A ., Ishizuka, O., Aljahdali, M., Jutzeler, M., Martinez-Colon, M., Palmer, M., & Talling, P.J., (2017) A revised Plio- Pleistocene age model and paleoceanography of the northeastern Caribbean Sea: IODP Site U1396 off Montserrat, Lesser Antilles. Stratigraphy , in press.

    Jutzeler, M., Manga, M., White, J.D.L., Talling, P.J., Proussevitch, A.A., Watt, S.F.L., Cassidy, M., Taylor, R.N., Le Friant, A.,  Ishizuka, O., (2017). Submarine deposits from pumiceous pyroclastic density currents traveling over water : An outstanding example from offshore Montserrat (IODP 340). GSA Bulletin. Doi :10.1130/B31448.1