I3 : Fundamental physics and Geophysics in space

Check out the project news!

  • Through the space projects they have been or are pursuing, IPGP and APC have acquired an expertise in precision measurements of distances, times and acceleration in astrophysics, fundamental physics in space, Planetary surface, Earth surface and ocean bottom, as well as a leading role in France in the coordination of missions closely associated to these techniques, e.g. French LISA office (LISA France) and the French Planetary seismometer, selected onboard the NASA/INSIGHT mission.


    The techniques involved are necessarily associated with high technology and often extreme precision, requiring unprecedented levels of noise control (often in harsh conditions and measurements at very low frequency) and space-compliant instruments. These techniques represent the path to the future and developing them will allow progress not only in the understanding of the most fundamental aspects of our environment, whether it is the Earth, solar system planets or the Universe at large, but also in the technological prospects for forthcoming space missions. They are indeed closely related with cutting edge knowledge and technologies such as nanotechnologies, high precision distance measurements, solid state physics, etc.


    The goal of this WP is to continue R&D efforts in these domains, in order:

    • to explore new technologies in acceleration measurements (e.g. with optical or quantum devices, including cold atoms, high temperature superconducting squids and tunneling diodes in the displacement or gravity sensors head, satellite/satellite laser and radio ranging),
    • furthermore reduce mass and integrate control electronics (e.g. with the development of Asics, hybrids and highly integrated 3D packaging),
    • precisely understand the physics of extremely low thrust engine (e.g. surface and chemical effects of ion sources used for micro-newton thrusters)
    • and highly improve insulating structure and packaging by controlling thermal transfers at the nanoscale (e.g. nano thermal coating and micro-design of thermal insulations).

    WP leader HALLOIN Hubert APC MCF, Paris Diderot
    WP co-leader LOGNONNE Philippe IPGP PR, Paris Diderot
    WP co-leader PLAGNOL Eric APC DR, IN2P3
    WP member INCHAUSPE Henri APC Post-Doc, LabEx
    WP member FAYON Lucille APC / IPGP PhD, Paris Diderot
    WP member DE RAUCOURT Sébastien IPGP Research Engineer, CNRS
    WP leader HALLOIN Hubert APC MCF, Paris Diderot


  • 2016 Milestones :

    LISA Pathfinder cold gas thrusters and LISA dynamics modelling :

    • Participation to the analysis of the LISA Pathfinder In-flight data: residual acceleration noise lower by an order of magnitude compared to the expectations
    • Reponsibility of the in-flight characterization of µN cold gas thrusters

    Optical readout for planetary seismometers and mechanical transfer function of VBB seismometers leveling system :

    • Detailed design and manufacturing of a measurment cavity prototype
    • Development of a mechanical model (transfer function) of the InSight seismometer, in the goal of improving the sensitivity to short-period seismic phenomena



    Armano et al. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder. Physical review letters (2017) vol. 118 pp. 171101

    Armano et al. Constraints on LISA Pathfinder’s self-gravity: design requirements, estimates and testing procedures. Classical and Quantum Gravity (2016) vol. 33 pp. 235015

    Nofrarias et al. Optimal design of calibration signals in space-borne gravitational wave detectors. Physical Review D (2016) vol. 93 pp. 102004

    Armano et al. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. Physical Review Letters (2016) vol. 116 pp. 231101

    Armano et al. A noise simulator for eLISA: Migrating LISA Pathfinder knowledge to the eLISA mission. Journal of Physics: Conference Series (2015) vol. 610 pp. 012036 [Main author : Henri Inchauspé]

    Armano et al. A Strategy to Characterize the LISA-Pathfinder Cold Gas Thruster System. Journal of Physics: Conference Series (2015) vol. 610 pp. 012026

    Inchauspe et Plagnol. Migrating LISAPathfinder noise results to the eLISA mission. 40th COSPAR Scientific Assembly. Held 2-10 August 2014 (2014) vol. 40

    Without a written acknowledgment of the UnivEarthS Labex support:

    Vitale et al. Data series subtraction with unknown and unmodeled background noise. Physical Review D (2014) vol. 90 pp. 042003