F1a : Earth as a living planet: from early ages to present dynamics

Check out the project news!


The description and understanding of the dynamics of the solid Earth, as well as its interactions with the hydrosphere and the biosphere, requires quantitative constraints on the processes at work. The theory of plate tectonics, the principles of geochemical dynamics applied to tracking of surface and deep Earth processes, as well as pioneers studies of bio-mineral interactions are examples of achievements obtained at IPGP during the last decades. However, as good as the understanding of present solid and surface Earth dynamics is, its initiation during the early ages of the Earth remains poorly constrained and understood. To fill the gap between the present and pristine dynamics of the Earth, specific sub-projects linked to the exploration of the proto-Earth and to the study of modern analogues will be developed conjointly. During the first two years of Frontier Project 1, effort will be devoted at 1) performing a new drilling operation of a key stratigraphic succession of the Archaen Eon and 2) constraining the rates and regimes of deformation over a range of spatial scales along the Chiliean Margin.

  • The co-evolution of Life and Oxygen on early Earth

    The Turee Creek Group Drilling Project (TCDP), Western Australia



    The objective of this Project Frontier hosted at IPGP is to characterize the evolving biosphere and the changing environments across the 2.45 to 2.32 Ga old Great Oxidation Event. To achieve this goal, we will obtain pristine drill cores of key sedimentary successions from the Turee Creek Group in Western Australia and develop an integrated analytical approach on the same samples at multiple scales (from the microfossil-scale to the sedimentary basin level). The strong focus on linking multiple scales of observations, sedimentary and metamorphic history, and the use of state-of-the-art mineralogical and geochemical techniques should provide new insights into the history of life and oxygen on early Earth. Results from the project could also help to explain the global atmosphere-related changes in sedimentary mineralization that occurred during the Paleoproterozoic.



    The principal aims of the project, to investigate vertical stratigraphic changes in mineral and rock geochemistry, organo-metallic assemblages, seawater precipitates, and changes in the composition of the Earth’s atmosphere between 2.45 and 2.32 Ga, should improve our understanding of the nature and timing of the “Great Oxidation Event”. We will obtain drill core of key sedimentary successions of 2.45 to 2.2 Ga old Turee Creek Group, Western Australia, and perform a systematic petrographical study—thin-section microscopy and SEM investigations and magnetic microscopy at high stratigraphical resolution to determine depositional environment, discover microbial fabrics and textures (stromatolites, etc.) and control for diagenesis and metamorphism. We will perform U-Pb and Re-Os geochronology of selected volcanoclastic and terrigenous sedimentary rocks in order to obtain provenance information and to define their maximum depositional ages. We will perform X-ray core scanning and trace element geochemistry of a large suite of samples, and use this information to target S, Fe, Mo, Cr, Cd and C and N stable isotope analysis both in situ and using powders of selected micro-domains extracted from the rock samples. We will investigate BIF and stromatolites to constrain the sinks of bio-essential metals released from oxidative weathering and utilized by primary producers.


    Turee Creek.jpg

    Figure 1 : Geological Map of Western Australia showing the drilling core site of Turee Creek



    The Turee Creek Group was choosen because it represents the only continuous stratigraphic sedimentary section worldwide hosting the Great Oxydation Event and the first global glaciation (Huronian glaciation), thus providing a unique opportunity to examine the nature, rate, and duration of the rise of atmospheric oxygen on Earth. The Turee Creek Group represents the uppermost section of the Hamersley Basin. It has a total thickness of about 4 km, shallowing upwards from banded iron formation (BIF) of the underlying Boolgeeda Iron Fm. forming the top of the Hamersley Group, to clastic sedimentary rocks, glacial diamictites of the Meteorite Bore Member and stromatolitic carbonates of the Kazput Formation.



    Figure 2: Stratigraphic section of the Turee Creek Group. Potential drilling sites identified include the contact between the Boolgeeda and the Kungari Fromations, The Meteorite Bore Member diamictites and a section of the Kazput Formation.





    WP leader Pascal Philippot IPGP Professor, University Paris Diderot
    WP co-leader Jean Besse IPGP Physicien, IPGP
    WP co-leader Wafa Abouchami IPGP Postdoc Labex UnivEarths
    WP member Magali Ader IPGP Professeur, IPGP
    WP member Janaina Avila ANU Postdoc, ANU
    WP member Jean Louis Birck IPGP DR, CNRS
    WP member Vincent Busigny IPGP Professor, University Paris Diderot
    WP member Tom Caquineau IPGP PhD, University Paris Diderot
    WP member Julie Carlut IPGP CR, CNRS
    WP member Pierre Cartigny IPGP DR, CNRS
    WP member Marc Chaussidon IPGP DR, CNRS
    WP member Chen Cheng Beijing University/IPGP PhD, Univ. of Mining and Technology
    WP member Trevor Ireland ANU Professor, ANU
    WP member Aude Isambert IPGP MCF, University Paris Diderot
    WP member Bryan Killingsworth Institut Européen de la Mer/IPGP Postdoc Marie Curie
    WP member Kurt Konhauser University of Alberta Professor
    WP member Stefan Lalonde Institut Europ.en de la Mer CR, CNRS
    WP member Kevin Lepot Universit. de Lille MCF, University Lille
    WP member Pascale Louvat IPGP IR, CNRS
    WP member Manuel Moreira IPGP Professor, IPGP
    WP member Frédéric Moynnier IPGP Professor, University Paris Diderot
    WP member Elodie Muller IPGP PhD, University Paris Diderot
    WP member Jean-Louis Paquette Universit. de Clermont-Ferrand DR, CNRS
    WP member Ernesto Pecoits Technological University of Uruguay Ass. Professor, UTEC
    WP member Noah Planavsky Yale University Ass. Professor, Yale University
    WP member Claire Rollion-Bard IPGP IR, CNRS
    WP member Marie Thobie Institut Européen de la Mer PhD, IEM
    WP member Christophe Thomazo Universit. de Dijon MCF, University Dijon
    WP member Emmanuelle Vennin Universit. de Dijon Professor, University Dijon
    WP member Xiangly Wang Yale University Postdoctorate, Yale University
    WP member Tyler Warchola University of Alberta PhD, University of Alberta




    2016 Milestones :


    • Sulfur Isotope evidence for a protracted history of oscillating atmospheric oxygen levels between 2.45 and 2.25 Gyr ago.
    • High resolution chemostratigraphy of the Late Archean-Early Proterozoic transition
    • Magnetite geochemical signature as a proxy of early traces of life.
    • Remnant of Hadean continental crust in the Pilbara Craton.
    • A geochemical record of the emergence of oxygenic photosynthesis using Mn enrichments and U isotopes




    • X-ray fluorescence core scanning at high stratigraphic resolution (Lalonde et al., in prep.)
    • Stratigraphic log completed (Philippot et al., in review at Nature Communications)
    • Major and trace element chemistry completed (Warchola et al., to be submited)
    • C isotopes at high stratigraphic resolution (Ader et al., in prep)
    • S isotope analysis and Re-Os dating of sulfides (Philippot et al., in review at Nature Communications)
    • In situ U-Pb dating of monazite and zircons (Caquineau et al., in review at Precam. Res.)
    • In situ Hf-isotope analysis of zircons to reconstruct the sediment provenance (Caquineau et al., in prep.)
    • Fe isotope analysis of magnetite separate from BIFs samples showing the two Verwey temperatures. The goal is to identify Magnetotactic Bacteria in the ancient rock record (a Master student hired on the analytical protocol)
    • Coupled N and Cd isotopes analysis (Abouchami et al., in prep; Cheng et al., in prep)
    • Mo isotope systematics of Kazput carbonates (Thoby et al., in prep)
    • Multiple O-isotope analysis (16O, 17O, 18O) of Carbonate Associated Sulfate and barite (Killingsworth et al., in prep.)
    • Multiple S-isotope analysis (32S, 33S, 34S, 36S) of Carbonate Associated Sulfate (Killingsworth et al., in prep)
    • U isotopes analysis (Wang et al., in thrid review in PNAS)
    • Cr isotopes (Fred Moynier, in progress, IPGP)



    Outcome directly supported by Labex UnivEarths

    Peer Reviewed articles


    Philippot, P., Van Zuilen, M., and Rollion-bard, C., 2012. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nature Geoscience 5, 668-674

    Kumar, A., Nagaraju, E., Besse, J., and Rao, B., 2012. New age, geochemical and paleomagnetic data on a 2.21 Ga dyke swarm from south India: Constraints on Paleoproterozoic reconstruction. Precamb. Res. 220, 123-138.


    Teitler, Y., Le Hir, G., Fluteau, F., Philippot, P., Donnadieu, Y., 2013. Investigating the Paleoproterozoic glaciations with 3-D climate modeling. Earth Planet. Sci. Lett. 395, 71-80.


    François, C., Philippot, P., Rey, P., Rubatto, E., 2014. Burial and exhumation during Archean sagduction in the East Pilbara Granite-GreenstoneTerrane. Earth Planet. Sci. Lett. 396, 235-251.

    Hardisty, D., Lu, Z., Planavsky, N., Bekker, A., Philippot, P., Zhou, X., Lyons, T., 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42, 619–622.

    Pecoits, E., Smith, M.L., Catling, D.C., Philippot, P., Kappler, A., Konhauser, K.O., 2014. Atmospheric Hydrogen Peroxide and Eoarchean Iron Formations. Geobiology, DOI: 10.1111/gbi.12116.

    Sforna, M.C., Philippot, P., somogyi, A., van Zuilen, M.A., Medoudji, K., Nitschke, W., Schoepp-Cottenet, B., Visscher, P., 2014. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nature Geoscience, 7, 811–815.

    Sforna, M.C., van Zuilen, M.A., Philippot, P., 2014. Structural characterization by Raman hyperstractral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta 114, 18–33.

    van Zuilen, M.A., Philippot, P., Lepland, A., Whitehouse, M.J., 2014. Sulfur Isotope Mass-Independent Fractionation in Impact Deposits of the 3.2 Billion-year-old Mapepe Formation, Barberton Greenstone Belt, South Africa. Geochim. Cosmochim. Acta 142, 429-441.


    Amor, M., Busigny, V., Durand-Dubief, M., Tharaud, M., Ona-Nguema, G., Gélabert, A., Alphandéry, E., Menguy, N., Benedetti, M., Cgebbi, I., Guyot, F., 2015. Chemical signature of magnetotactic bacteria. Proc. Nat. Acad. Sci., www.pnas.org/cgi/doi/10.1073/pnas.1414112112

    Carlut, J., Isambert, A., Bouquerel, H., Pecoits, P., Philippot, P., Vennin, E., Ader, M., Thomazo, C., Buoncristiani, J.-F., Baton, F., Muller, E., Deldicque, D., 2015. Low Temperature Magnetic Properties of the Late Archean Boolgeeda Iron Formation (Hamersley Group, Western Australia): Environmental Implications. Frontiers in Earth Science. http://journal.frontiersin.org/article/10.3389/feart.2015.00018

    Teitler, Y., Philippot, P., Gérard, M., Le Hir, G., Fluteau, F., Ader, M., 2015. Ubiquitous occurrence of basaltic-derived paleosols in the Late Archaean Fortescue Group, Western Australia. Precamb. Res. 267, 1-27.

    Marin-Carbonne, J., Remusat, L., Sforna, M.C., Thomazo, C., Cartigny, P., Philippot, P. Sulfur isotopes signal of nanopyrites enclosed in 2.7 billions year old stromatolitic organic remains reveal microbial sulfate reduction and diagenetic processes in closed system. Proc. Nat. Acad. Sci., submited

    Morag, N., Williford, K.H., Kitajima, K., Philippot, P., Van Kranendonk, M.J., Lepot, K., Valley, J.W. Microstructure -specific carbon isotopic signature of organic matter from ~3.5 Ga cherts of the Pilbara Craton support biologic origin. Precamb. Res., submited


    – Busigny, V., Marin-Carbonne, J., Muller, E., Cartigny, P., Rollion-Bard, C., Assayag, N. and Philippot, P. (2017) Iron and sulfur isotope constraints on redox conditions associated with barite deposits from the 3.2 Ga Mapepe Formation
    (Barberton Greenstone Belt, South Africa). Geochim. Cosmochim. Acta, 210, 247–266.
    – Fadel A., Lepot K., Busigny V, Addad A, Troadec D., 2017. Iron mineralization and taphonomy of microfossils of the 2.45–2.21 Ga Turee Creek Group, Western Australia. Precamb. Res., 298, 530–551.
    – Muller, E., Philippot, P., Rollion-Bard, C., Cartigny, P., Assayag, N., Marin-Carbonne, J., Ram Mohan, M. and Srinivasa Sarma, D. (2017) Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the
    Sargur Group, Dharwar Craton, India. Precamb. Res. 295, 38-47.
    – Philippot, P., Rollion-Bard, C. and Muller, E. (in press) Origin of paleoarchean sulfate deposits, in: Van Kranendonk, M.J., Bennett, V.C., Hoffman, J.E. (Eds.), Earth’s Oldest Rocks. Elsevier.

    International Conferences

    Ader, M., Thomazo, C., Baton, F., Muller, E., Chaduteau, C., Cartigny, P., Vennin, E., Buoncristiani, J.F., Van Kranendonk, M., Philippot, P., 2015., Paired carbon isotope from three key intervals of the Turee Creek Group, Pilbara Craton, Australia, Goldschmidt Conference, Prague.

    Busigny, V., Marin-Carbonne, J., Muller, E., Cartigny, P., Assayag, N., Rollion-Bard, C., Philippot, P., 2015. Fe and S isotope constraints on redox conditions associated with barite deposits from the 3.2 Ga Mapepe Formation (South Africa), Goldschmidt Conference, Prague.

    Caquineau T, François C, Paquette JL, Marin-Carbonne J (2014). 24ième RST, Pau, October 2014

    Caquineau T, François C, Paquette JL, M. Van Kranendonk, Philippot, P. 2015, U-Pb monazite dating of the Turee Creek Group sedimentary succession: implications on the rise of oxygen and glacial events, Goldschmidt Conference, Prague.

    Daye M, Sforna MC, Philippot P, Somogyi A, Van Zuilen M, Medjoubi K, (2014), 24ième RST, Pau, October 2014

    Avila, J., Ireland, T.R., Holden, P., Philippot, P., 2015. In situ multiple sulfur isotope analysis of pyrites with SHRIMP-SI: deconvolving complex depositional and post-depositional processes. Goldschmidt Conference, Prague.

    Marin-Carbonne J, Muller E, Busigny V, Rollion-Bard C, Philippot P (2013), Goldschmidt, Firenze, p 23

    Marin-Carbonne J, Muller E, Miot, J, Busigny V, Rollion-Bard C, Philippot P (2014), Goldschmidt, Sacramento

    Marin-Carbonne J, Remusat, L., Sforna, M., Thomazo, C., Cartigny, P., Philippot P., 2015. Evidence of microbial sulfate reduction in nanopyrites enclosed in 2.7 billions year old stromatolitic organic remains, Goldschmidt Conference, Prague.

    Muller E, Philippot P, Rollion-Bard C, Sarma DS (2013), Goldschmidt, Firenze, p.1805

    Muller, E, Philippot P, Rollion-Bard C, Cartigny P, 24ième RST, Pau, October 2014

    Muller, E., Philippot, P., Rollion-Bard, C., Cartigny, P., 2015. Deconvolution of the sulfur cycle in Archean sulfate deposits using quadruple sulfur isotope (32S, 33S, 34S, 36S) analyses. Goldschmidt Conference, Prague.

    Pecoits, E., S.V. Lalonde, M. Van Kranendonk, P. Philippot (2015). Trace Element Chemostratigraphy of the Paleoproterozoic Turee Creek and Uppermost Hamersley Groups, Western Australia. Goldschmidt Conf, Prague.

    Lalonde, S.V., E. Pecoits, A. Beaumaris, K.O. Konhauser, P. Philippot (2015). A High Resolution Record of Paleoproterozoic Environmental Change: XRF Core Scan Data from the Turee Creek Drilling Project (TCDP), Hamersley and Turee Creek Groups, Western Australia. Goldschmidt Conference, Prague.

    Pereira A., Thomazo C, Vennin E, Buoncristiani JF, Van Kranendonk M, Philippot P, 24ième RST, Pau, october 2014.

    Philippot P, Van Zuilen M, Rollion-Bard C (2012), Geophysical Research Abstracts, Vienna, p 3644

    Philippot P, Van Zuilen M, Rollion-Bard-C (2012), Goldschmidt Conference, Montreal

    Philippot P, Teitler Y, Gerard M, Cartigny P, Muller E, Assayag N, LeHir G, Fluteau F (2013), Goldschmidt, Firenze, p 76

    Philippot P, Van Kranendonk M, Thomazo, C., Muller E, Marin-Carbonne J, Lalonde S, Vennin E, Buonchristiani JF, Baton F, Caquineau T, Pereira A, Pecoits E, Planavsky N, Ader M, Isambert A, Bouquerel H, Busigny V, Carlut J, Cartigny P, Lepot K, 24ième RST, Pau, October 2014.

    Philippot P, Avila, J.N., Baton, F., Cartigny, P., Irealand, T.R., Muller, E., Rollion-Bard, C., Van Kranendonk, 2015. Multiple sulfur isotopes from the 2.45-2.2 Ga old Turee Creek Group and the rise of atmospheric oxygen, Goldschmidt Conference, Prague.

    Sforna MC, Philippot P, van Zuilen M, Somogyi A, Medjoubi K, Visscher PT & Dupraz C, (2013), Goldschmidt, Firenze, p

    Sforna MC, Philippot P, Somogyi A, van Zuilen M, Medjoubi K, Schoepp-Cothenet B., Nitschke W., Visscher P. 2015. Arsenic metabolism and cycling in early Earth oceans. Goldschmidt Conference, Prague.

    Teitler Y., Philippot, P., Gerard M., Le Hir G., Fluteau F., Ader, M. , 2015. Direct evidence for significant oxygen in the Late Archean atmosphere from paleosols of the Fortescue Group, Western Australia, Goldschmidt Conference, Prague.

    van Zuilen M, Philippot P, Whitehouse M & Lepland A, (2013), Goldschmidt, Firenze, p

    Visscher, P., Farias, M., Contrapas, M., Novoa-Cortez, F., Rasuk, C., Patterson, Philippot, P., Sforna M., Gallagher, K., Dupraz, C., 2014. Geol. Soc. Amer. Abs. Vol., 1922, 2014


    News & Views

    Nature Geoscience, Sept. 2012, Unexpectedly abiotic, Bozwell Wing, 5, 598-599

    Nature Geoscience, Oct. 2014, Arsenic and Primordial Life, Tom Kulp, 7, 785–786


    Popular science and extension to the general public

    CNRS, International Magazine, April 2012, « The Origins of Life», 25, p 21-23

    La Recherche, October 2012, Des éruptions gigantesques sur la Terre Primitive, 468, 16-17.

    CNRS, Paris 9 aout 2012, De gigantesques panaches volcaniques ont recouvert la Terre à trois reprises entre 3,5 et 3,2 milliards d’années http://www.insu.cnrs.fr/terre-solide/origine-evolution-histoire/de-gigantesques-panaches-volcaniques-ont-recouvert-la-terre-

    CNRS, 26 October, 2014, Des micro-organismes métabolisaient l’arsenic dans des lacs salins il y a plus de 2,7 milliards d’années http://www.insu.cnrs.fr/node/5044

    Festival Pariscience, 7 october 2013, Invited conference after projection of the movie « Comment faire pousser une planète ? » Museum d’Histoire Naturelle.

    Exobiology school, Origin of life on Earth, Teich, 2014


    Conference and session organized

    P. Philippot, Chair of the theme “Early Earth – Earth’s history before the Phanerozoic” of the 2015 Goldschmidt Conference, Prague. (co-chair Y. Ueno, TIT and T. Rushmer, Macquarie University ; 6 sessions organized)

    N. Planavsky, D. Catling, K. Konhauser, Z. Lu, P. Philippot, convenors of the Session « Precambrian Redox Evolution » of the 2015 Goldschmidt Conference, Prague.


    Outcome not directly supported by Labex UnivEarths but connected to the project

    Peer Reviewed Articles.

    Marty, B., Zimmermann, L., Pujol, M., Burgess, R., Philippot, P., 2013. Nitrogen isotopic composition and partial pressure in the Archean atmosphere from analysis of pristine inclusion fluids. Science 342, 101-104.

    Pujol, M., Marty, B., Burgess, R., Turner, G., Philippot, P., 2013. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature 498, 87-90.

    Le Hir, G., Teitler, Y., Fluteau, F., Donnadieu, Y., 2014. The faint young Sun problem revisited with a 3-D climate–carbon model – Part 1, Clim. Past 10, 697–713.


    News and Views

    CNRS, 6 juin 2013, L’essentiel de la croûte continentale formée entre 3,8 et 2,7 milliards d’années, http://www.insu.cnrs.fr/node/4391

    CNRS, 22 septembre 2013, L’atmosphère entre 3,8 et 2,4 milliards d’années, http://www.insu.cnrs.fr/node/4503

    Science Daily, 4 October 2013, Climate Puzzle Over Origins of Life On Earth, http://www.sciencedaily.com/releases/2013/10/131004090307.htm?utm_sour


    Popular Science

    La Recherche, December 2013 Des bulles d’eau révèlent l’atmosphère de la Terre primitive, 482, 8-9.